Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha, và đề bài cũng có chút sai sót, phải là EF//BC mới là đúng!
Giải chứng minh ED//BC:
Vì \(\Delta ABC\) cân tại A (gt) => \(\widehat{ABC}=\widehat{ACB}=\left(180^0-\widehat{A}\right):2\)
Vì AE = AF (gt) => \(\Delta AFE\) cân tại A => \(\widehat{AEF}=\widehat{AFE}=\left(180^0-\widehat{A}\right):2\)
=> \(\widehat{ABC}=\widehat{ACB}=\widehat{AEF}=\widehat{AFE}=\left(180^0-\widehat{A}\right):2\)
mà \(\widehat{AEF}\) và \(\widehat{ABC}\) ở vị trí đồng vị
=> DE//BC (đpcm)
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
Giải
Bạn tự vẽ hình
\(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{AIC}=\widehat{AIB}=90^0\)do \(AI\perp BC\)
=> Tamgiac AIC = tamgiac AIB
=> IB = IC (dn)
b, Dùng PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E
=> Goc AFE = (180 - goc BAC) : 2
Tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2
=> Goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC
Vậy ... ( đpcm )