Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Mình chỉ biết làm a) và b) thôi, cậu thông cảm. Hình tự vẽ nhé *
a) Vì AM vuông góc với AC => CAM = 90 độ
BM vuông góc với BC => CBM = 90 độ
Xét tam giác CMA và tam giác CMB, ta có:
+) CAM = CBM ( cmt )
+) AC = BC ( tam giác ABC cân tại C )
-> CM chung
=> Tam giác CMA = tam giác CMB ( cạnh huyền - cạnh góc vuông )
b) Vì tam giác CMA = tam giác CMB ( cmt )
=> ACH = BCH
Xét tam giác ACH và tam giác BCH, ta có:
+) AC = BC
+) ACH = BCH
-> CH chung
=> Tam giác ACH = tam giác BCH ( c.g.c )
=> AH = BH
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: AB=căn 4^2+3^2=5cm
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
=>M là trung điểm của AB
Xét ΔABC có
CM,AH là trung tuyến
CM cắt AH tại G
=>G là trọng tâm
a) Xét ∆CMA và ∆ CMB có:
AC=BC (∆ABC cân tại C)
\(\widehat{CAM}=\widehat{CBM}=90^o\)
CM chung
=> ∆CMA = ∆CMB (ch-gn)
b) Vì ∆CMA=∆CMB => \(\widehat{ACM}=\widehat{BCM}\)(2 góc tương ứng)
=> CH là phân giác \(\widehat{ACB}\)
∆ACB cân tại C => CH cũng là trung tuyến
=> AH=BH
c) Ta có: \(\widehat{CBA}=\frac{180^o-\widehat{ACB}}{2}=\frac{180^o-120^o}{2}=\frac{60^o}{2}=30^o\)
Mà \(\widehat{CBA}+\widehat{ABM}=90^o\)
=> \(\widehat{AMB}=90^o-\widehat{CBA}=90^o-30^o=60^o\)
∆CMA =∆CMB => AM=MB => ∆AMB cân tại M
=> ∆AMB là ∆ đều
a) Xét 2 tam giác vuông CAM và CBM có:
CM: cạnh chung
CA = CB ( Vì tam giác ABC cân tại C)
Do đó tam giác CAM=CBM ( cạnh huyền- cạnh góc vuông)
b) Xét tam giác CHA và CHB có:
\(\widehat{ACH}\)=\(\widehat{BCH}\)( Vì \(\Delta CAM=\Delta CBM\))
CA = CB ( Do tam giác ABC cân tại C)
\(\widehat{CAH}=\widehat{CBH}\)( Do tam giác ABC cân tại C )
Do đó tam giác CHA= CHB (g-c-g)
=> HA= HB ( 2 cạnh tương ứng)
c) Ta có tam giác CAM= CBM
=> AM= BM ( 2 cạnh tương ứng )
=> tam giác AMB cân tại M
Tam giác ABC có \(\widehat{ACB}=120^O\)
=> \(\widehat{CAB}=\frac{180^0-120^0}{2}=30^O\)
=> \(\widehat{MAB}=90^0-\widehat{CAB}=90^0-30^0=60^0\)
\(\Delta MAB\)cân tại M có \(\widehat{MAB}=60^0\)
Do đó tam giác MAB là tam giác đều khi \(\widehat{ACB}=120^0\)
a) Xét hai tam giác vuông: \(\Delta DAB;\Delta DMB\) có:
\(DB\) chung
\(\widehat{DBA}=\widehat{DMA}\) (\(BD\) là tia phân giác của \(\widehat{B}\))
\(\Rightarrow\Delta DAB=\Delta DMB\) (cạnh huyền - góc nhọn)
b) Do ∆DAB = ∆DMB (cmt)
⇒ DA = DM (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AM (1)
Do ∆DAB = ∆DMB (cmt)
⇒ BA = BM (hai cạnh tương ứng)
⇒ B nằm trên đường trung trực của AM (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AM
Hay BD ⊥ AM
c) Xét hai tam giác vuông:
∆DMC và ∆DAK có:
DM = DA (cmt)
∠MDC = ∠ADK (đối đỉnh)
∆DMC = ∆DAK (cạnh góc vuông - góc nhọn kề)
⇒ MC = AK (hai cạnh tương ứng)
Lại có: BM = BA (cmt)
⇒ BM + MC = BA + AK
⇒ BC = BK
∆BCK cân tại B
Mà BD là tia phân giác của ∠B
⇒ BD cũng là đường cao của ∆BCK
⇒ BD ⊥ KC
Mà BD ⊥ AM (cmt)
⇒ AM // KC