K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

* Mình chỉ biết làm a) và b) thôi, cậu thông cảm. Hình tự vẽ nhé *

a) Vì AM vuông góc với AC => CAM = 90 độ

        BM vuông góc với BC => CBM = 90 độ

Xét tam giác CMA và tam giác CMB, ta có:

+) CAM = CBM ( cmt )

+) AC = BC ( tam giác ABC cân tại C )

-> CM chung

=> Tam giác CMA = tam giác CMB ( cạnh huyền - cạnh góc vuông )

b) Vì tam giác CMA = tam giác CMB ( cmt )

=> ACH = BCH

Xét tam giác ACH và tam giác BCH, ta có:

+) AC = BC

+) ACH = BCH

-> CH chung

=> Tam giác ACH = tam giác BCH ( c.g.c )

=> AH = BH

1 tháng 5 2021

thk anyways

29 tháng 5 2016

Câu a chứng minh cái gì?

Câu c: Khi ABC=1200 là sao?

29 tháng 5 2016

câu a chứng minh gìb

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: AB=căn 4^2+3^2=5cm

c: Xét ΔABC có

H là trung điểm của BC

HM//AC

=>M là trung điểm của AB

Xét ΔABC có

CM,AH là trung tuyến

CM cắt AH tại G

=>G là trọng tâm

27 tháng 3 2020

C A B H M

a) Xét ∆CMA và ∆ CMB có:

AC=BC (∆ABC cân tại C)

\(\widehat{CAM}=\widehat{CBM}=90^o\)

CM chung

=> ∆CMA = ∆CMB (ch-gn)

b) Vì ∆CMA=∆CMB => \(\widehat{ACM}=\widehat{BCM}\)(2 góc tương ứng)

=> CH là phân giác \(\widehat{ACB}\)

∆ACB cân tại C => CH cũng là trung tuyến

=> AH=BH

c) Ta có: \(\widehat{CBA}=\frac{180^o-\widehat{ACB}}{2}=\frac{180^o-120^o}{2}=\frac{60^o}{2}=30^o\)

Mà \(\widehat{CBA}+\widehat{ABM}=90^o\)

=> \(\widehat{AMB}=90^o-\widehat{CBA}=90^o-30^o=60^o\)

∆CMA =∆CMB => AM=MB => ∆AMB cân tại M

=> ∆AMB là ∆ đều

30 tháng 4 2020

a) Xét 2 tam giác vuông CAM và CBM có:

           CM: cạnh chung

           CA = CB ( Vì tam giác ABC cân tại C)

Do đó tam giác CAM=CBM ( cạnh huyền- cạnh góc vuông)

b) Xét tam giác CHA và CHB có:

\(\widehat{ACH}\)=\(\widehat{BCH}\)( Vì \(\Delta CAM=\Delta CBM\))

CA = CB ( Do tam giác ABC cân tại C)

\(\widehat{CAH}=\widehat{CBH}\)( Do tam giác ABC cân tại C )

Do đó tam giác CHA= CHB (g-c-g)

=> HA= HB ( 2 cạnh tương ứng)

c) Ta có tam giác CAM= CBM

=> AM= BM ( 2 cạnh tương ứng )

=> tam giác AMB cân tại M

Tam giác ABC có \(\widehat{ACB}=120^O\)

=> \(\widehat{CAB}=\frac{180^0-120^0}{2}=30^O\)

=> \(\widehat{MAB}=90^0-\widehat{CAB}=90^0-30^0=60^0\)

\(\Delta MAB\)cân tại M có \(\widehat{MAB}=60^0\)

Do đó tam giác MAB là tam giác đều khi \(\widehat{ACB}=120^0\)

 

           

26 tháng 1 2018

Xét hai tam giác vuông ABD và ACD, ta có:

                      ˆABD=ˆACD=90∘ABD^=ACD^=90∘

                      AB = AC (chứng minh trên)

                      AD cạnh huyền chung                     

⇒⇒ ∆ABD = ∆ACD (cạnh huyền, cạnh góc vuông)

Suy ra: ˆA1=ˆA2A1^=A2^ (hai góc tương ứng)

Vậy AD là tia phân giác của góc A.

5 tháng 5 2023

a) Xét hai tam giác vuông: \(\Delta DAB;\Delta DMB\) có:

\(DB\) chung

\(\widehat{DBA}=\widehat{DMA}\) (\(BD\) là tia phân giác của \(\widehat{B}\))

\(\Rightarrow\Delta DAB=\Delta DMB\) (cạnh huyền - góc nhọn)

5 tháng 5 2023

b) Do ∆DAB = ∆DMB (cmt)

⇒ DA = DM (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AM (1)

Do ∆DAB = ∆DMB (cmt)

⇒ BA = BM (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AM (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AM

Hay BD ⊥ AM

c) Xét hai tam giác vuông:

∆DMC và ∆DAK có:

DM = DA (cmt)

∠MDC = ∠ADK (đối đỉnh)

∆DMC = ∆DAK (cạnh góc vuông - góc nhọn kề)

⇒ MC = AK (hai cạnh tương ứng)

Lại có: BM = BA (cmt)

⇒ BM + MC = BA + AK

⇒ BC = BK

∆BCK cân tại B

Mà BD là tia phân giác của ∠B

⇒ BD cũng là đường cao của ∆BCK

⇒ BD ⊥ KC

Mà BD ⊥ AM (cmt)

⇒ AM // KC