K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

A B C D E

16 tháng 1 2018

a, Góc AEC chắn cung AC

Và góc ACB chắn cung AB

Mà: Cung AB = Cung AC

\(\Rightarrow\) Góc AEC = Góc ACB

b, Xét 2 tam giác AEC và tam giác ACD, ta có:

Góc EAC là góc chung

Góc AEC = Góc ACB (Cmt)

\(\Rightarrow\) Tam giác AEC đồng dạng Tam giác ACD (g.g)

25 tháng 8 2020

cái đề em biết rồi chị nhắn tên bài cho em nhé là em giúp chị

26 tháng 8 2020

Xét tg ACD và tg BED có

^ADC = ^BDE (góc đối đỉnh)

^CAD = ^CBE (đề bài)

=> ^ACB = ^AEB => C và E cùng nhìn AB dưới 1 góc = nhau và = ^ACB không đổi

=> A;B;E;C cùng nằm trên 1 đường tròn cố định (Do A;B;C cố định)

Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H và đường tròn ngoại tiếp tứ giác ABEC tại F

Do ABC cân tại A => AF cũng là đường trung trực thuộc cạnh BC của tg ABC => Tâm đường tròn ngoại tiếp tứ giác AABEA thuộc AF => AF là đường kính của đường tròn ngoại tiếp tứ giác ABEC.

Nối E với F => ^AEF = 90 (góc nội tiếp chắn nửa đường tròn)

Xét tg vuông AHD và tg vuông AEF có 

^EAF chung

=> tg AHD đồng dạng với tg AEF nên \(\frac{AD}{AF}=\frac{AH}{AE}\Rightarrow AD.AE=AH.AF\)

Do A,B,C cố định => AH không đổi

Do đường tròn ngoại tiếp tứ giác ABEC cố định => AF không đổi

=> AD.AE=AH.AF không đổi

10 tháng 1 2020

@Akai Haruma help me

10 tháng 1 2020

DD'//BC ở F???

13 tháng 12 2021

\(a,\widehat{AEB}=\dfrac{1}{2}sđ\stackrel\frown{AB};\widehat{ABC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\)

Mà \(\Delta ABC\) cân tại \(A\) nên \(AB=AC\Rightarrow\stackrel\frown{AB}=\stackrel\frown{AC}\)

\(\Rightarrow\widehat{AEB}=\widehat{ABC}\\ \Rightarrow\Delta ABE\sim\Delta ADB\left(g.g\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{AE}{AB}\Rightarrow AB^2=AE\cdot AD\)

\(b,\widehat{AEB}=\widehat{ABC}\) nên AB là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ABC\)