Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Góc AEC chắn cung AC
Và góc ACB chắn cung AB
Mà: Cung AB = Cung AC
\(\Rightarrow\) Góc AEC = Góc ACB
b, Xét 2 tam giác AEC và tam giác ACD, ta có:
Góc EAC là góc chung
Góc AEC = Góc ACB (Cmt)
\(\Rightarrow\) Tam giác AEC đồng dạng Tam giác ACD (g.g)
Xét tg ACD và tg BED có
^ADC = ^BDE (góc đối đỉnh)
^CAD = ^CBE (đề bài)
=> ^ACB = ^AEB => C và E cùng nhìn AB dưới 1 góc = nhau và = ^ACB không đổi
=> A;B;E;C cùng nằm trên 1 đường tròn cố định (Do A;B;C cố định)
Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H và đường tròn ngoại tiếp tứ giác ABEC tại F
Do ABC cân tại A => AF cũng là đường trung trực thuộc cạnh BC của tg ABC => Tâm đường tròn ngoại tiếp tứ giác AABEA thuộc AF => AF là đường kính của đường tròn ngoại tiếp tứ giác ABEC.
Nối E với F => ^AEF = 90 (góc nội tiếp chắn nửa đường tròn)
Xét tg vuông AHD và tg vuông AEF có
^EAF chung
=> tg AHD đồng dạng với tg AEF nên \(\frac{AD}{AF}=\frac{AH}{AE}\Rightarrow AD.AE=AH.AF\)
Do A,B,C cố định => AH không đổi
Do đường tròn ngoại tiếp tứ giác ABEC cố định => AF không đổi
=> AD.AE=AH.AF không đổi
\(a,\widehat{AEB}=\dfrac{1}{2}sđ\stackrel\frown{AB};\widehat{ABC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\)
Mà \(\Delta ABC\) cân tại \(A\) nên \(AB=AC\Rightarrow\stackrel\frown{AB}=\stackrel\frown{AC}\)
\(\Rightarrow\widehat{AEB}=\widehat{ABC}\\ \Rightarrow\Delta ABE\sim\Delta ADB\left(g.g\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{AE}{AB}\Rightarrow AB^2=AE\cdot AD\)
\(b,\widehat{AEB}=\widehat{ABC}\) nên AB là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ABC\)