Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
a) Có : \(\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ACE}=180^o\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
-Xét tam giác ABD và ACE có :
AB=AC (tam giác ABC cân tại A)
BD=CE(đều bằng AB)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
=> Tam giác ABD=ACE(c.g.c)
=> AD=AE
=> Tam giác ADE cân tại A(đccm)
b) Tam giác ABC cân tại A có : \(\widehat{BAC}=40^o\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-40^o}{2}=70^o\)
- Có : \(\widehat{ABC}+\widehat{ABD}=180^o\)
\(\Rightarrow70^o+\widehat{ABD}=180^o\)
\(\Rightarrow\widehat{ABD}=110^o\)
- Xét tam giác ABD cân tại B(BD=AB) có :
\(\widehat{ABD}+\widehat{BAD}+\widehat{ ADB}=180^o\)
\(\Rightarrow110^o+\widehat{BAD}+\widehat{ADB}=180^o\)
\(\Rightarrow\widehat{BAD}=\widehat{BDA}=\frac{180^o-110^o}{2}=35^o\)
- Tương tự, ta có : \(\widehat{AEC}=\widehat{CAE}=35^o\)
- Có : \(\widehat{DAE}=\widehat{DAB} +\widehat{CAE}+\widehat{BAC}=35^o+35^o+40^o=110^o\)
Vậy : \(\widehat{D}=\widehat{E}=35^o,\widehat{DAE}=110^o\)
c) Tam giác ABD cân tại B(AB=BD) có \(BH\perp DA\)
=> HD=HA(t/c đg TT,PG,cao,.. của tam giác cân)
Tương tự có AK=KE
Mà : AD=AE(tam giác ADE cân tại A)
=> AH=AK
-Xét tam giác AHO và AKO, có :
AH=AK(cmt)
\(\widehat{AHO}=\widehat{AKO}=90^o\)
AO-cạnh chung
=> Tam giác AHO=AKO(cạnh huyền-cạnh góc vuông)
=> HO=OK(đccm)
d) Do tam giác AHO=AKO(cmt)
=> \(\widehat{HAO}=\widehat{KAO}\)
\(\Rightarrow\widehat{HAB}+\widehat{BAO}=\widehat{KAC}+\widehat{CAO}\)
Mà : \(\widehat{HAB}=\widehat{KAC}=35^o\left(cmt\right)\)
Mà :\(\widehat{BAO}+\widehat{CAO}=\widehat{BAC}\)
\(\Rightarrow\widehat{BAO}=\widehat{CAO}=\frac{\widehat{BAC}}{2}=\frac{40}{2}=20^o\)
- Gọi giao điểm của AO và BC là I
Xét tam giác AIB có : \(\widehat{BAI}+\widehat{ABI}+\widehat{AIB}=180^o\)
\(\Rightarrow20^o+70^o+\widehat{AIB}=180^o\)
\(\Rightarrow90^o+\widehat{AIB}=180^o\)
\(\Rightarrow\widehat{AIB}=90^o\)
\(\Rightarrow AI\perp BC\left(đccm\right)\)
#H
Hình vẽ:
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
ΔADE cân tại A có AM là đường cao
nên AM là phân giác của góc DAE
a
Theo đề có \(\widehat{ABC}=\widehat{ACB}\) (tam giác ABC cân tại A)
Lại có: \(\widehat{ABD}+\widehat{ABC}=\widehat{ACE}+\widehat{ACB}\left(=180^o\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
`AB=AC`
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
`DB=CE`
=> ΔABD = ΔACE
=> `AD=AE` (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
b
Ta có:
`BM=CM`
`DB=CE`
\(\Rightarrow\)`DM=EM`
\(\Rightarrow\)AM là đường trung tuyến của ΔADE
\(\Rightarrow\)AM là tia phân giác của \(\widehat{DAE}\)