Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -△ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)
\(\Rightarrow\widehat{MBC}=\widehat{MCB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)
\(\Rightarrow\widehat{BMC}=180^0-\widehat{MBC}-\widehat{MCB}=180^0-50^0-50^0=80^0\)
b) \(AB=AC\) \(\Rightarrow\)A thuộc đg trung trực của BC. (1)
\(\widehat{MBC}=\widehat{MCB}=50^0\)\(\Rightarrow\)△BMC cân tại M\(\Rightarrow BM=CM\)\(\Rightarrow\)M thuộc đg trung trực BC (2)
-Từ (1), (2) suy ra AM là đg trung trực của BC.
Bài 2:
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
DO đó; ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
c: BC=10cm nên BH=CH=5cm
=>AC=13cm
a/ Ta có AB=AC(gt)
Mà D và E là trung điểm của AB và AC
=> AD=BD=AE=EC
Xét tam giác ABE và tam giác ACD có:
AB=AC(gt)
Góc A chung
AE=AD(cmt)
=> tam giác ABE= tam giác ACD(c-g-c)
b/ Ta có tam giác ABE= tam giác ACD(c-g-c)
=> góc ABE=góc ACD
=> góc KBC=góc KCB vì tam giác ABC cân tại A
Vậy tam giác KBC cân tại K
a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>IH=IK
=>AI là trung trực của KI
c: góc EBC+góc ABC=90 độ
góc HBC+góc ACB=90 độ
góc ABC=góc ACB
=>góc EBC=góc HBC
=>BC là phân giác của góc HBE