K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2022

Em xem lại đề nha 

AH là đường cao thì H∈BC

mà AM⊥BC(M∈BC)

⇒ H trùng M rồi

19 tháng 1 2022

dạ AM vuông góc với BO á

 

19 tháng 1 2022

*Gọi F là trung điểm DC.

Xét tam giác ABC cân tại A có:

AH là đường cao (gt)

=>AH cũng là đường trung tuyến

=>H là trung điểm BC.

Xét tam giác DBC có:

H là trung điểm BC (cmt)

F là trung điểm DC (gt)

=>HF là đường trung bình của tam giác DBC

=>HF//OD.

Xét tam giác AHF có:

O là trung điểm AH (gt)

HF//OD (cmt)

=>D là trung điểm AF

=>AD=DF

Mà DF=CF=\(\dfrac{1}{2}\)DC (F là trung điểm DC)

=>AD=DF=CF=\(\dfrac{1}{2}\)DC

Ta có: AM vuông góc với BO(gt)

CN vuông góc với BO(gt)

=>AM//CN

Xét tam giác ADM có:

AM//CN (cmt)

=>\(\dfrac{ÀD}{DC}=\dfrac{AM}{CN}=\dfrac{1}{2}\)(định lí Ta-let)

=>CN=2AM

4 tháng 7 2018

các bạn giúp mình với

mai tớ kiểm tra rồi

14 tháng 5 2022

A B C E F I M

a/ Xét tg vuông ABC có 

BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)

b/ Xét tg vuông AEF và tg vuông AFM có

\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)

Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)

Xét tg MBE và tg MFC có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)

=> tg MBE đồng dạng với tg MFC (g.g.g)

c/ Xét tg vuông ABC và tg vuông AFE có

\(\widehat{AEF}=\widehat{ACB}\) (cmt)

=> tg ABC đông dạng với tg AFE

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)

d/

 

a: ΔABC vuông tại A

mà AM là trung tuyến

nên AM=MB=MC

=>góc MBA=góc MAB

b: góc AEF=90 độ-góc EAM=90 độ-góc B

=>gócAEF=góc ACB

c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có

góc AEF=góc ACB

=>ΔAFE đồng dạng với ΔABC

=>AF/AB=AE/AC

=>AF*AC=AB*AE