Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
a, xét tam giác ABC cân tại A (gt)
AI _|_ BC (gt)
=> AI đồng thời là đường trung tuyến của tam giác ABC (đl)
=> I là trung điểm của BC (đn)
b, tam giác ABC vuông cân tại A (gt)
=> góc ABC = 45 (đl)
xét tam giác AIB vuông tại I
=> tam giác AIB vuông cân
AIC tương tự
c, AM + MB = AB
AN + NC = AC
AM = NC (gt)
AB = AC do tam giác ABC cân (gt)
=> MB = AN (1)
BI = IC do I là trung điểm của BC (câu a)
IC = AI do tam giác IAC cân (câu b)
=> BI = AI (2)
xét tam giác MBI và tam giác NAI có góc MBI = NAI = 45 (3)
(1)(2)(3) => tam giác MI = tam giác NAI (c-g-c)
d, góc AIB = 90 => góc BIM + góc MIA = 90
tam giác MI = tam giác NAI => góc BIM = góc AIN (đn)
=> góc AIN + góc MIA = 90
=> góc MIN = 90
tam giác MI = tam giác NAI => NI = IM (đn)
=> tam giác MIN vuông cân tại I (dh)
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
Giải
Bạn tự vẽ hình
\(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\) và \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{AIC}=\widehat{AIB}=90^0\)do \(AI\perp BC\)
=> Tamgiac AIC = tamgiac AIB
=> IB = IC (dn)
b, Dùng PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E
=> Goc AFE = (180 - goc BAC) : 2
Tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2
=> Goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC
Vậy ... ( đpcm )
Hình bạn tự vẽ
a, Nối M với N
Xét △BMN có:
BM=BN(gt)
=>△BMN cân tại B
=>∠BMN=(1800 - ∠B) / 2 (1)
Mà ∠BAC=(1800 - ∠B) / 2 (△ABC cân tại B) (2)
Từ (1) và (2) => ∠BMN=∠BAC (3)
Mà ∠BMN đồng vị ∠BAC (4)
Từ (3) và (4) => MN//AC
b, Xét △CMB và △ANB có
\(\left\{{}\begin{matrix}\text{AB = AC (△ABC cân tại B)}\\\text{∠ABC chung}\\\text{BM=BN}\left(gt\right)\end{matrix}\right.\)
=>△CMB = △ANB (c.g.c)
=> ∠BMC = ∠BNC
=>∠BMN + ∠CMN = ∠BNM + ∠MNA
Mà ∠BMN = ∠BNM (△BMN cân tại B)
=>∠BMN + ∠CMN = ∠BMN + ∠MNA
=> ∠CMN = ∠MNA
=> △IMN cân tại I
=> MI=NI (5)
Mà BM = BN (6)
Từ (5) và (6) => BI là đường trung trực của MN
=> BI ⊥ MN
Có gì không hiểu bạn cứ hỏi mình
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi
giúp mik ik ạk