K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là phân giác của góc BAC

c: ΔABC cân tại A

mà AH là trung tuyến

nên AH là trung trực của BC

=>I nằm trên trung trực của BC

=>IB=IC

d: Xet ΔABN có góc ABN=góc ANB=góc MBC

nên ΔABN can tại A

=>AB=AN

e: Xét ΔABC co

BM,AM là phân giác

nên M là tâm đừog tròn nội tiếp

=>CM là phân giác của góc ACB

Xét ΔHCM vuông tại H và ΔKCM vuông tại K có

CM chung

góc HCM=góc KCM

=>ΔHCM=ΔKCM

=>MH=MK

3 tháng 4 2017

 k mk đi, làm ơnnnnn

3 tháng 4 2017

xét tam giác BMC có:

CA vuông góc với BM (gt) => CA đường cao tam giác BMC

MK vuông góc với BC (cmt) => MK đường cao tam giác BMC

Mà CA cắt MK tại D (gt)

từ 3 điều đó => BD là đường cao thứ 3 của tam giác BMC

=> BD vuông góc với CM ( t/c )

k nha, 

26 tháng 6 2020

Trả lời phần d thôi nhé

26 tháng 6 2020

I A B C H E F

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △BAH và △CAH cùng vuông tại H

Có: AH là cạnh chung

      AB = AC (cmt)

=> △BAH = △CAH (ch-cgv)

b, Vì △BAH = △CAH (cmt)

=> BH = CH (2 cạnh tương ứng)

mà BH + CH = BC

=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2 = 102 - 62 = 64

=> AH = 8 (cm)

c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)

Mà ∠HAC = ∠HAB (△CAH = △BAH)

=> ∠AHE = ∠HAB  => ∠AHE = ∠HAE 

=> △AHE cân tại E

d, Gọi { I } = EH ∩ BF

Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)

Mà ∠ABC = ∠ACB (cmt)

=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH

Mà EA = HE (△AHE cân tại E)

=> EA = BE 

Xét △BAH có: E là trung điểm AB (EA = BE)  => HE là đường trung tuyến

F là trung điểm AH => BF là đường trung tuyến 

EH ∩ BF = { I } 

=> I là trọng tâm của △BAH

\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)

Xét △BHI có: BI + HI > BH (bđt △)

\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)

\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)

\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)

26 tháng 6 2020

trả lời phần d thôi nhé

26 tháng 6 2020

c)\(\Delta\)BHA vuông tại A 

=> ^ABH + ^BAH = 90 độ 

mà ^BHE +^EHA = 90 độ 

mà ^BAH = ^EHA  ( vì  \(\Delta\)AEH cân  tại E) 

=> ^ABH = ^BHE =>  \(\Delta\)BEH cân tại E

Gọi K là trung điểm BH => EK vuông BH 

vì \(\Delta\)AEH cân => EF vuông AH 

=> \(\Delta\)EKH = \(\Delta\)HFE => EF = KH = 1/2 BH = 1/4 BC 

Ta có: \(\Delta\)EFH vuông tại F => EH > EF = 1/4 BC 

\(\Delta\)BFH vuông tại H => BF >  BH = 1/2 BC

=> BF + HE > 1/4 BC + 1/2 BC = 3/4 BC

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)