Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: góc C = 70 độ
=> góc BCI = 35 độ
=> góc IBC = 25
=> góc B = 50 độ
=> góc A = 60 độ
Vậy tam giác ABC có góc A = 60 độ; góc B = 50 độ; góc C = 70 độ
Xét tam giác IBC có: góc BIC + góc IBC + góc ICB = 180 độ ( định lý tổng 3 góc trong tam giác )
Mà góc BIC = 120 độ ( giả thiết ) => góc IBC + góc ICB = 180 độ - 120 độ = 60 độ
Vì BI là phân giác góc ABC ( giả thiết ) => góc IBC = \(\frac{1}{2}\)góc ABC
Vì CI là phân giác góc ACB ( giả thiết ) => góc ICB = \(\frac{1}{2}\)góc ACB
=>góc IBC + góc ICB = \(\frac{1}{2}\)góc ABC + \(\frac{1}{2}\)góc ACB = 60 độ
=> \(\frac{1}{2}\)( góc ABC + góc ACB ) = 60 độ
=> góc ABC + góc ACB = 120 độ
Xét tam giác ABC có: góc A + góc ABC + góc ACB = 180 độ ( định lý tổng 3 góc trong tam giác )
=> góc A + 120 độ = 180 độ
=> góc A = 60 độ
Tam giác ABC cân tại A => \(\widehat{B}=\widehat{C}\)
Mà 2 tia phân giác góc B và Góc C cắt nhau tại I
=> Tạo ra tam giác BIC cân tại I (do \(\widehat{B}=\widehat{C}\Leftrightarrow2\widehat{CBI}=2\widehat{BCI}\Rightarrow\widehat{CBI}=\widehat{BCI}\))
Khi đó tam giác BIC có :
\(\widehat{BIC}+2\widehat{BCI}=180^{\text{o}}\Rightarrow\widehat{BCI}=\widehat{CBI}=30^{\text{o}}\Rightarrow\widehat{C}=\widehat{B}=60^{\text{o}}\Rightarrow\widehat{A}=60^{\text{o}}\)(tổng 3 góc tam giác)
Xét \(\Delta BIC\)có I+B2+C2=\(^{180^0}\)
=>B2+C2=180-I
=>B2+C2=60\(^0\)
Ta lại có \(B1=B2=\frac{B}{2}\)
\(C1=C2=\frac{C}{2}\)
Mà B=C( tam giác ABC cân )
=>\(B2=C2;C1=B1\)
\(\Leftrightarrow B1+B2+C1+C2=C+B\)
\(\Leftrightarrow C+B=2\cdot B2+2\cdot C2\)
\(\Leftrightarrow C+B=120^O\)
Xét \(\Delta ABC\)có A+B+C=180O
=>A=1800-B-C
=>A=600
b)\(Xét\Delta BEI\)VÀ\(\Delta CDI\)CÓ:
B2=C2(cmt)
EIB=DIC(2 góc đối đỉnh)
BI=CI(TAM GIÁC BIC CÂN)
=>\(\Delta BIE=\Delta CID\left(c-g-c\right)\)
=>IE=ID(2 cạnh tương ứng)
Bạn xem ở đường link này:
Câu hỏi của Cùng học toán đi - Toán lớp 6 - Học toán với OnlineMath
Hình vẽ a chèn không rõ được không, chắc giống của e thôi.
https://1drv.ms/u/s!AhUPZHs4UJtKilHrVZWqF8i6a584?e=0TIfMP
Ta có : \(\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BIC}=180^0-\frac{\widehat{ABC}}{2}-\frac{\widehat{ACB}}{2}\)( Do IB,IC là tia phân giác của góc ABC và ACB)
còn \(\widehat{BKC}=180^0-\widehat{KBC}-\widehat{KCB}\)( Do tổng ba góc trong một tam giác bằng 180 độ)
\(\Rightarrow\widehat{BKC}=180^0-\frac{\widehat{xBC}}{2}-\frac{\widehat{yCB}}{2}\)( Do KB,KC là tia phân giác của góc ABC và ACB)
Mà \(\hept{\begin{cases}\widehat{xBC}=180^0-\widehat{ABC}\\\widehat{yCB}=180^0-\widehat{ACB}\end{cases}}\)\(\Rightarrow\widehat{BKC}=180^0-\left(\frac{180^0-\widehat{ABC}}{2}+\frac{180^0-\widehat{ACB}}{2}\right)\)
\(\Rightarrow\widehat{BKC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}\)
Hình tự vẽ
Vì tam giác ABC cân tại A => góc B = góc C
=> \(\widehat{B}=\widehat{C}=\left(180^{\text{o}}-2.70^{\text{o}}\right):2=20^{\text{o}}\)
=> \(\widehat{CBI}=\widehat{BCI}\) = 20 : 2 = 10o
=> Xét tam giác BIC có : \(\widehat{BIC}=\)180o - 10o - 10o = 160o
Hình tự vẽ nhé !
Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\left(1\right)\)
Xét tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(2\right)\) ( tính chất tổng 3 góc 1 tam giác )
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-70^0}{2}=55^0\)
Vì tia phân giác góc B và C cắt nhau tại I \(\Rightarrow\widehat{BCI}=\widehat{CBI}=55^0\div2=27,5^0\)
Xét tam giác BIC có \(\widehat{BCI}+\widehat{BIC}+\widehat{CBI}=180^0\) ( t/c tổng 3 góc 1 tam giác )
\(\Rightarrow\widehat{BIC}=180^0-\left(\widehat{BCI}+\widehat{CBI}\right)=180^0-\left(27,5^0+27,5^0\right)=125^0\)
Cậu tự vẽ hình !
Theo tổng ba goác trong một tam giác , ta có :
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(70^0+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\widehat{ABC}+\widehat{ACB}=110^0\)
Vì I là là giao điểm ba đường phân giác nên
BI là phân giác của góc ABC
\(\Rightarrow\widehat{ABI}=\widehat{IBC}=\frac{\widehat{ABC}}{2}\)
CI là phân giác của góc ACB
\(\Rightarrow\widehat{ACI}=\widehat{ICB}=\frac{\widehat{ACB}}{2}\)
Ta có :
\(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^0}{2}=50^0\)
Và áp dụng tổng 3 góc trong tam giác lên tam giác BIC thì
=> Góc BIC = 1800 - 500 = 1300