Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC
Tứ giác MNCB có MN // BC nên là hình thang
b) Xét ∆EQN và ∆KQC có:
^ENQ = ^KCQ (BN//CK, so le trong)
QN = QC (gt)
^EQN = ^KQC (đối đỉnh)
Do đó ∆EQN = ∆KQC (g.c.g)
=> EN = KC ( hai cạnh tương ứng) (1)
∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE (2)
Từ (1) và (2) suy ra KC = BE
Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)
c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)
d) Gọi J là trung điểm của BC
Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ
Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF
Mà dễ thấy EF // BC nên IJ⊥BC
∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)
a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.
=> MN //BC
Tứ giác MNCB có MNBC nên MNCB là hình thang.
b) Xét tứ giác EKCB có EK//BC, BE//CK
=> EKCB là hình bình hành
=> EK = BC (đpcm)
Sửa đề Từ điểm D trên đáy BC
góc ANM=góc BND=90 độ-góc B
góc AMN=90 độ-góc C
mà góc B=góc C
nên góc AMN=góc ANM
=>ΔAMN cân tại A
mà AK là đường trung tuyến
nên AK vuông góc MN tại K
Xét tứ giác AHDK có
AK//DH
AH//DK
=>AHDK là hình bình hành
mà góc AHD=90 độ
nên AHDK là hình chữ nhật
1. Ta có tam giác ABC cân tại A, do đó AB = AC.
Gọi I là giao điểm của đường phân giác góc B và đường phân giác góc C.
Ta cần chứng minh MN // BC.
Ta có:
∠BIM = ∠CIM (do I nằm trên đường phân giác góc B và đường phân giác góc C)
∠BIM = ∠CIM = ∠BIC/2 (do I nằm trên đường phân giác góc B và đường phân giác góc C)
∠BIC = ∠BAC (do tam giác ABC cân tại A)
∠BIC = ∠BAC = ∠BCA (do tam giác ABC cân tại A)
Do đó, ta có ∠BIM = ∠CIM = ∠BCA.
Từ đó, ta có MN // BC (do ∠MNI = ∠BCA và ∠MIN = ∠BAC).
Vậy ta đã chứng minh MN // BC.
2. a) Ta có BF/BE = 2/3.
Gọi x là độ dài của BE.
Do BF/BE = 2/3, ta có BF = (2/3)x.
Gọi y là độ dài của FE.
Do FE = 12cm, ta có y = 12cm.
Gọi z là độ dài của IF.
Do I là giao điểm của FE và BD, ta có IF/FE = BD/BE.
Do đó, IF/12 = BD/x.
Ta có BD = BC + CD = BC + BA = BC + BE.
Do đó, IF/12 = (BC + BE)/x.
Ta có BF/BE = 2/3, nên BF = (2/3)x.
Do đó, BC = BF + FC = (2/3)x + (1/3)x = x.
Vậy, IF/12 = (x + x)/x = 2.
Từ đó, ta có IF = 2 * 12 = 24cm.
Do đó, IE/IF = BE/FE = x/12.
Vậy, IE/IF = x/12.
b) Giả sử FE = 12cm.
Từ phần a), ta đã tính được IF = 24cm.
Do đó, IE/IF = x/12.
Ta cần tính x.
Ta có BF/BE = 2/3, nên BF = (2/3)x.
Do BF = (2/3)x và BC = x, ta có BC = BF + FC.
Do đó, x = (2/3)x + FC.
Từ đó, FC = (1/3)x.
Vậy, BC = BF + FC = (2/3)x + (1/3)x = x.
Do đó, BC = x = 12cm.
Vậy, độ dài của IE và IF lần lượt là 12cm và 24cm.
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành