K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔABC có 

\(\dfrac{AI}{AB}=\dfrac{AK}{AC}\)

Do đó: IK//BC

Xét tứ giác BIKC có IK//BC

nên BIKC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BIKC là hình thang cân

29 tháng 9 2015

A B C H I K

a) Ta có AI = AK ; AB = AC => AI / AB = AK/ AC => IK // BC (Định lí Ta lét)

Tam giác ABC cân tại A có AH là đường cao => AH I BC  

=> AH I IK

Mặt khác, tam giác AIK cân tại A : AH là đường cao nên đồng thời là đường trung trực 

=> I và K đối xứng qua AH

14 tháng 7 2018

A B C H M I K G E

a) Giao điểm của AH và BC là E. Dễ thấy: \(\Delta\)BHM = \(\Delta\)CKM (c.g.c) => ^HBM = ^KCM

=> ^HBC = ^KCB. Do H đối xứng với I qua BC => ^HBC = ^IBC => ^KCB = ^IBC (1)

Xét \(\Delta\)HIK: E là trung điểm IH; M là trung điểm của HK => EK là đường trung bình \(\Delta\)HIK

=> EM // IK hay IK // BC => Tứ giác BIKC là hình thang (2)

Từ (1) & (2) => Tứ giác BIKC là hình thang cân (đpcm).

b) Dễ c/m tứ giác BHCK là hình bình hành (Do có tâm đối xứng) => HC // BK

Hay HC // GK => Tứ giác GHCK là hình thang 

Để tứ giác GHCK là hình thang cân thì ^GHC = ^KCH

<=> ^HAC + ^HCA = ^HCB + ^HBC <=> ^HCA = ^HCB ( Vì ^HAC = ^HBC, cùng phụ ^ACB)

<=> CH là phân giác ^ACB. Mà CH cũng là đường cao của \(\Delta\)ABC => \(\Delta\)ABC cân tại C

Vậy khi \(\Delta\)ABC cân tại C thì tứ giác GHCK là hình thang cân.

3 tháng 12 2019

hình như đề bài sai