Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc A chung
Do đó: ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC co AE/AB=AD/AC
nên ED//BC
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
d: AB=AC
IB=IC
Do đó: AI là trung trực của BC
=>AI vuông góc với BC
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
a, Xét △BAD vuông tại D và △CAE vuông tại E
Có: AB = AC (△ABC cân tại A)
BAC là góc chung
=> △BAD = △CAE (ch-gn)
=> AD = AE (2 cạnh tương ứng)
b, Xét △IAE vuông tại E và △IAD vuông tại D
Có: AE = AD (cmt)
AI là cạnh chung
=> △IAE = △IAD (ch-cgv)
=> IAE = IAD (2 góc tương ứng)
=> AI là phân giác EAD
=> AI là phân giác BAC
c, Vì AE = AD (cmt) => △ADE cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> ED // BC (dhnb)
d, Xét △BAM và △CAM
Có: AB = AC (cmt)
BM = MC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.c.c)
=> BAM = CAM (2 góc tương ứng)
=> AM là phân giác BAC
Mà AI cũng là phân giác BAC
=> AM ≡ AI
=> 3 điểm A, I, M thẳng hàng