Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBHC vuông tại H và ΔCKB vuông tại K có
BC chung
\(\widehat{BCH}=\widehat{CBK}\)
Do đó: ΔBHC=ΔCKB
b: Ta có: ΔBHC=ΔCKB
nên \(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
=>IB=IC
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
Suy ra: \(\widehat{IBK}=\widehat{ICH}\)
c: Ta có: ΔABH=ΔACK
nên AK=AH
Xét ΔABC có AK/AB=AH/AC
nên KH//BC
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
b: Ta có: ΔAHB=ΔAKC
=>\(\widehat{ABH}=\widehat{ACK}\)
=>\(\widehat{KBI}=\widehat{HCI}\)
Ta có: AK+KB=AB
AH+HC=AC
mà AK=AH và AB=AC
nên KB=HC
Xét ΔIKB vuông tại K và ΔIHC vuông tại H có
KB=HC
\(\widehat{KBI}=\widehat{HCI}\)
Do đó: ΔIKB=ΔIHC
c: ta có: ΔIKB=ΔIHC
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: IB=IC
=>I nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,I,M thẳng hàng
Tgiac ABC cân tại A => AB = AC và góc ABC = ACB
a) Xét tgiac ABH và ACK có:
+ AB = AC
+ chung góc A
+ góc AHB = AKC = 90 độ
=> tgiac ABH = ACK (ch-gn)
=> góc ABH = ACK
Mà góc ABC = ACB
=> ABC - ABH = ACB - ACK
=> góc OBC = OCB
=> tgiac OBC cân tại O
=> đpcm
b) Tgiac OBC cân tại O => OB = OC
Xét tgiac OBK và OCH có:
+ góc OKB = OHC = 90 độ
+ OB = OC
+ góc KBO = HCO (cmt)
=> tgiac OBK = OCH (ch-gn)
=> đpcm
c) Xét tgiac ABO và ACO có:
+ OB = OC
+ AO chung
+ AB = AC
=> tgiac ABO = ACO (ccc)
=> góc BAO = CAO
=> tia AO là tia pgiac của góc BAC (1)
Xét tgiac ABI và ACI:
+ AI chung
+ AB = AC
+ IB = IC
=> tgiac ABI = ACI (ccc)
=> góc BAI = CAI
=> AI là tia pgiac góc BAC (2)
(1), (2) => A, O, I thẳng hàng (đpcm)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
Do đó: ΔAHB=ΔAKC
b: ΔAHB=ΔAKC
=>AH=AK
c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AH=AK
Do đó: ΔAKI=ΔAHI
=>góc KAI=góc HAI
=>AI là phân giác của góc BAC
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
KB=HC
\(\widehat{KBO}=\widehat{HCO}\)
Do đó:ΔOBK=ΔOCH
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
B1:tự vẽ hình:>
b,Xét t/g vg ABH và t/g vg ACK có
AB=AC(vì t/g ABC cân)
Góc A chung
=>t/g ABH=t/g ACK(ch-gn)
c,Ta có:AK+KB=AB
AH+HC=AC
Mà AB=AC,AK=AH(t/gABH=t/gACK)
=>KB=HC(1)
Mặt khác:K1+K2=H1+H2=180o
Mà K1=H1
=>K2=H2(2)
Vì t/g ABH=t/g ACK(cmt)
=>Góc ABH=góc ACK(2 góc t.ư) (3)
Từ(1),(2) và (3)=>t/g OBK=t/g OCH(g.c.g)
c,chưa nghĩ ra
B2,Tự vẽ hình
a,t/g ABC cân tại A
=>Góc ABC=góc ACB(1)
EI // AF => góc EIB = góc ACB(2)
Từ (1) và (2)=>góc ABC=góc EIB
=>t/g BEI cân tại E
b,t/g BEI cân tại E
=>BE=EI mà BE=CF
=>CF=EI
Xét t/g IEO và t/g CFO có
CF=EI
Góc IDE=góc COF (đối đỉnh)
góc CFI=góc OEI
=>t/gIEO=t/gCFO(g.c.g)
=>OE=OF(2 cạnh t.ư)
c,Ta có :ABKC là hình thoi(ABK=ACK=90o)
Mà t/g ABC là t/g cân tại A
=>t/g BKC cân tại K=>BK=KC
Xét t/g CFK và t/g BEK có:
BK=KC
EBK=OCF
CF=BE
=>t/g CFK=t/g BEK(g.c.g)
=>t/g EKF cân tại K
Có OE=OF(cm ở câu b)
=>Ok là trung tuyến EKF
=>OK là trung trực
=>OK vuông EF