K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

BC chung

\(\widehat{BCH}=\widehat{CBK}\)

Do đó: ΔBHC=ΔCKB

b: Ta có: ΔBHC=ΔCKB

nên \(\widehat{IBC}=\widehat{ICB}\)

hay ΔIBC cân tại I

=>IB=IC

Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

Suy ra: \(\widehat{IBK}=\widehat{ICH}\)

c: Ta có: ΔABH=ΔACK

nên AK=AH

Xét ΔABC có AK/AB=AH/AC

nên KH//BC

22 tháng 12 2023

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

b: Ta có: ΔAHB=ΔAKC

=>\(\widehat{ABH}=\widehat{ACK}\)

=>\(\widehat{KBI}=\widehat{HCI}\)

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔIKB vuông tại K và ΔIHC vuông tại H có

KB=HC

\(\widehat{KBI}=\widehat{HCI}\)

Do đó: ΔIKB=ΔIHC

c: ta có: ΔIKB=ΔIHC

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng

14 tháng 2 2021

Tgiac ABC cân tại A => AB = AC và góc ABC = ACB

a) Xét tgiac ABH và ACK có:

+ AB = AC

+ chung góc A

+ góc AHB = AKC = 90 độ

=> tgiac ABH = ACK (ch-gn)

=> góc ABH = ACK

Mà góc ABC = ACB

=> ABC - ABH = ACB - ACK

=> góc OBC = OCB

=> tgiac OBC cân tại O

=> đpcm

b) Tgiac OBC cân tại O => OB = OC

Xét tgiac OBK và OCH có:

+ góc OKB = OHC = 90 độ

+ OB = OC

+ góc KBO = HCO (cmt)

=>  tgiac OBK = OCH (ch-gn)

=> đpcm

c) Xét tgiac ABO và ACO có:

+ OB = OC

+ AO chung

+ AB = AC

=> tgiac ABO = ACO (ccc)

=> góc BAO = CAO

=> tia AO là tia pgiac của góc BAC (1)

Xét tgiac ABI và ACI:

+ AI chung

+ AB = AC

+ IB = IC

=> tgiac ABI = ACI (ccc)

=> góc BAI = CAI

=> AI là tia pgiac góc BAC (2)

(1), (2) => A, O, I thẳng hàng (đpcm)

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

Do đó: ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>AH=AK

c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co

AI chung

AH=AK

Do đó: ΔAKI=ΔAHI

=>góc KAI=góc HAI

=>AI là phân giác của góc BAC

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

b: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có

KB=HC

\(\widehat{KBO}=\widehat{HCO}\)

Do đó:ΔOBK=ΔOCH

9 tháng 3 2022

1 lấy đâu ra kb=hc

 

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b:

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác

c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC

11 tháng 5 2023

Bạn ơi cho hỏi là Ak/Ab = AH/Ac là sao ạ

Câu 1 : Cho tam giác ABC cân tại A có góc A < 90 độ . Kẻ BH vuông góc với AC , CK vuông góc với AB ( H thuộc AC , K thuộc AB ) . Gọi O là giao điểm của BH và CK . a, Chứng minh tam giác ABH = tam giác ACK b, Chứng minh tam giác OBK =tam giác OCH c, Trên nửa mặt phảng BC không chứa điểm A lấy điểm I sao cho IB = IC . Chứng minh ba điểm A , O , I thẳng hàng . Câu 2 : Cho tam giác ABC cân tại A . Trên cạnh AB lấy điểm...
Đọc tiếp

Câu 1 : Cho tam giác ABC cân tại A có góc A < 90 độ . Kẻ BH vuông góc với AC , CK vuông góc với AB ( H thuộc AC , K thuộc AB ) . Gọi O là giao điểm của BH và CK . 

a, Chứng minh tam giác ABH = tam giác ACK 

b, Chứng minh tam giác OBK =tam giác OCH 

c, Trên nửa mặt phảng BC không chứa điểm A lấy điểm I sao cho IB = IC . Chứng minh ba điểm A , O , I thẳng hàng . 

Câu 2 : Cho tam giác ABC cân tại A . Trên cạnh AB lấy điểm E . Trên tia đối của tia CA lấy điểm F sao cho BE = CF . Nối EF cắt BC tại O . Kẻ EI song song với AF ( I thuộc BC ) . 

a, Chứng minh tam giác BEI là tam giác cân . 

b, Chứng tỏ OE =OF

c, Đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại K . Chứng tỏ tam giác EKF là tam giác cân và OK vuông góc với EF , 

giúp mình với ạ , mình cần tất cả trong vòng tối nay ạ , ai làm mình sẽ tick cho ạ !!!!

 

1
21 tháng 6 2020

B1:tự vẽ hình:>

b,Xét t/g vg ABH và t/g vg ACK có
       AB=AC(vì t/g ABC cân)

     Góc A chung

=>t/g ABH=t/g ACK(ch-gn)

c,Ta có:AK+KB=AB

            AH+HC=AC

Mà AB=AC,AK=AH(t/gABH=t/gACK)

=>KB=HC(1)

Mặt khác:K1+K2=H1+H2=180o

Mà K1=H1

=>K2=H2(2)

Vì t/g ABH=t/g ACK(cmt)

=>Góc ABH=góc ACK(2 góc t.ư)   (3)

Từ(1),(2) và (3)=>t/g OBK=t/g OCH(g.c.g)

c,chưa nghĩ ra

B2,Tự vẽ hình

a,t/g ABC cân tại A

=>Góc ABC=góc ACB(1)

EI // AF => góc EIB = góc ACB(2)

Từ (1) và (2)=>góc ABC=góc EIB

=>t/g BEI cân tại E

b,t/g BEI cân tại E

=>BE=EI mà BE=CF

=>CF=EI

Xét t/g IEO và t/g CFO có

      CF=EI

Góc IDE=góc COF (đối đỉnh)

góc CFI=góc OEI

=>t/gIEO=t/gCFO(g.c.g)

=>OE=OF(2 cạnh t.ư)

c,Ta có :ABKC là hình thoi(ABK=ACK=90o)

Mà t/g ABC là t/g cân tại A

=>t/g BKC cân tại K=>BK=KC

Xét t/g CFK và t/g BEK có:

BK=KC
EBK=OCF

CF=BE

=>t/g CFK=t/g BEK(g.c.g)

=>t/g EKF cân tại K

Có OE=OF(cm ở câu b)

=>Ok là trung tuyến EKF

=>OK là trung trực

=>OK vuông EF