K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

a) Xét tứ giác AHCD có IH = ID ( do D đối xứng với H qua I )

                                   IA = IC ( do I là trung điểm của AC )

    => Tứ giác AHCD là hình bình hành

    Mà góc AHC = 90 độ ( do AH là đương cao )

    => Tứ giác AHCD là hình chữ nhật

16 tháng 12 2016

Câu b) sai đề à?

13 tháng 12 2022

MIK ĐANG CẦN GẤP , GIÚP MIK VS AH

 

13 tháng 12 2022

Bài 3:

a: Xét tứ giác AMBH có

I là trung điểm chung của AB và MH

MA=MB

Do đó; AMBH là hình thoi

b: Xét ΔBAC có BI/BA=BM/BC

nên IM//AC

=>MH//AC

=>IH//AC

c: Để AHBM là hình vuông thì góc AMB=90 độ

=>ΔABC cân tại A

=>AB=AC

1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng vớiH qua I . Chứng minh tứ giác AHCD là hình chữ nhật.2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,AC . Chứng minh:a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10cm.4. Cho tứ giác ABCD có hai đường chéo vuông góc...
Đọc tiếp

1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.

4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;

b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.

1

Bài 1: 

Xét tứ giác AHCD có 

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

a: Xét tứ giác AHCD có

M là trung điểm chung của AC và HD

\(\widehat{AHC}=90^0\)

Do đó: AHCD là hình chữ nhật

b: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét ΔABC có

H,M lần lượt là trung điểm của CB,CA

=>HM làđường trung bình

=>HM//AB và HM=AB/2

mà HM=HD/2

nên AB=HD

c: 

AHCD là hình bình hành

=>AD//CH và AD=CH

AD//CH

=>AD//BH

AD=CH

CH=BH

Do đó: AD=BH

Xét tứ giác ABHD có 

AD//BH

AD=BH

Do đó: ABHD là hình bình hành

8 tháng 10 2023

vẽ hình pls

 

 

23 tháng 12 2017

a. Vì EH =HD , AH =BH 

=> Tứ giác AEBD là hình bình hành ( tính chất)

23 tháng 12 2017

a)  E là điểm đối xứng của D qua H

\(\Rightarrow\) HE = HD

Tứ giác AEBD có HE = HD;  HA = HB

\(\Rightarrow\)AEBD là hình bình hành

mà có \(\widehat{ADB}\)= 900

\(\Rightarrow\)hình bình hành AEBD là hình chữ nhật

b)  \(\Delta ABC\)cân tại A,  có AD là đường cao 

\(\Rightarrow\)AD là đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DB = DC

\(\Delta ABC\)có  HA = HB;  DB = DC

\(\Rightarrow\)HD là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)HD // AC

\(\Rightarrow\)Tứ giác AHDC là hình thang