Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADCH có
M là trung điểm chung của AC và HD
góc AHC=90 độ
Do đó: ADCH là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có
MA=MD
\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)
Do đó: ΔMHA=ΔMKD
=>MH=MK
=>M là trung điểm của HK
Xét tứ giác AHDK có
M là trung điểm chung của AD và HK
=>AHDK là hình bình hành
a: Xét tứ giác AHCD có
M là trung điểm chung của AC và HD
góc AHC=90 độ
=>AHCD là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
=>ADHE là hình bình hành
\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành
Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn
\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)
Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)
Do đó: ADHE là hình bình hành
\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE
Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)
Do đó \(MN//BH\) hay \(MN//BC\)
Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)
Do đó \(NK//HC\) hay \(NK//BC\)
Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBD là hình chữ nhật
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBD là hình chữ nhật
b: Xét ΔAEB có
H là trung điểm của EB
M là trung điểm của AB
Do đó: HM là đường trung bình
=>HM//AE và HM=AE/2
hay HD//AE và HD=AE
hay ADHE là hình bình hành
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MC=MB=\dfrac{BC}{2}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
b: Xét ΔABC có
M là trung điểm của CB
MH//AB
Do đó: H là trung điểm của AC
Xét tứ giác AMCD có
H là trung điểm chung của AC và MD
nên AMCD là hình bình hành
Hình bình hành AMCD có MA=MC
nên AMCD là hình thoi
c: Để AMCD là hình vuông thì \(\widehat{MCD}=90^0\)
AMCD là hình thoi
=>AC là phân giác của \(\widehat{MAD}\) và CA là phân giác của \(\widehat{MCD}\)
=>\(\widehat{MCA}=\dfrac{1}{2}\cdot\widehat{BAC}=45^0\)
=>\(\widehat{ACB}=45^0\)
a: Xét tứ giác AHCD có
M là trung điểm chung của AC và HD
\(\widehat{AHC}=90^0\)
Do đó: AHCD là hình chữ nhật
b: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔABC có
H,M lần lượt là trung điểm của CB,CA
=>HM làđường trung bình
=>HM//AB và HM=AB/2
mà HM=HD/2
nên AB=HD
c:
AHCD là hình bình hành
=>AD//CH và AD=CH
AD//CH
=>AD//BH
AD=CH
CH=BH
Do đó: AD=BH
Xét tứ giác ABHD có
AD//BH
AD=BH
Do đó: ABHD là hình bình hành
vẽ hình pls