K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có 

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔBEC=ΔCDB

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

BD=CE

Do đó: ΔABD=ΔACE

Xét ΔBEK vuông tại E và ΔCDK vuông tại D có

EB=DC

\(\widehat{EBK}=\widehat{DCK}\)

Do đó: ΔBEK=ΔCDK

c: Xét ΔBAK và ΔCAK có 

BA=CA

AK chung

BK=CK

Do đó: ΔBAK=ΔCAK

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)

hay AK là tia phân giác của góc BAC

27 tháng 1 2022

a) Xét tam giác BCE vuông tại E và tam giác CBD vuông tại D:

BC chung.

Góc B = Góc C (Tam giác ABC cân tại A).

=> Tam giác BCE = Tam giác CBD (cạnh huyền - góc nhọn).

b) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E:

Góc A chung.

AB = AC (Tam giác ABC cân tại A).

=> Tam giác ABD = Tam giác ACE (cạnh huyền - góc nhọn).

=> Góc ABD = Góc ACE (2 góc tương ứng).

Xét tam giác BEK và tam giác CDK:

Góc EBK = Góc DCK (Góc ABD = Góc ACE).

BE = CD (Tam giác BCE = Tam giác CBD).

Góc BEK = Góc CDK (= 90o).

=> Tam giác BEK = Tam giác CDK (g - c - g).

c) Xét tam giác ABC:

BD là đường cao (BD vuông góc với AC).

CE là đường cao (CE vuông góc với AB).

BD cắt CE tại K (gt).

=> K là trực tâm.

=> AK là đường cao.

Xét tam giác ABC cân tại A: AK là đường cao (cmt).

=> AK là đường phân giác góc BAC (Tính chất các đường trong tam giác cân).

7 tháng 2 2020

giúp mk với các bạn ơi mk phải đi học thêm

7 tháng 2 2020

A B C I E D K _ _ + +

a) Xét \(\Delta\)BCE và \(\Delta\)BCD có:

CEB = BDC (= 90o)

BC: chung

EBC = DCB (\(\Delta\)ABC cân)

\(\Rightarrow\Delta\)BCE = \(\Delta\)BCD (ch-gn)

b) Xét \(\Delta\)BEK và \(\Delta\)CDK có:

BEK = CDK (= 90o)

EB = DC (\(\Delta\)BCE = \(\Delta\)BCD)

EKB = CKD (đối đỉnh)

\(\Rightarrow\Delta\) BEK = \(\Delta\)CDK (cgv-gn)

c) Ta có: 

AB = AE + EB

AC = AD + DC

Mà AB = AC (\(\Delta\)ABC cân), EB = DC (\(\Delta\)BCE = \(\Delta\)BCD)

\(\Rightarrow\)AE = AD

Xét \(\Delta\)AKE và \(\Delta\)AKD có: 

AEK = ADK (= 90o)

AE = AD (cmt)

AK: chung

\(\Rightarrow\)\(\Delta\) AKE = \(\Delta\)AKD (ch-cgv)

\(\Rightarrow\)KAE = KAD (2 góc tương ứng)

\(\Rightarrow\)AK là phân giác BAC

d) Xét \(\Delta\)AIB và \(\Delta\)AIC có:

AB = AC (\(\Delta\)ABC cân)

AI: chung

IB = IC (I: trung điểm BC)

\(\Rightarrow\)\(\Delta\) AIB = \(\Delta\)AIC (c.c.c)

\(\Rightarrow\)IAB = IAC (2 góc tương ứng)

\(\Rightarrow\)AI là phân giác BAC

Ta có:

+) AK là phân giác BAC

+) AI là phân giác BAC

\(\Rightarrow\)A, K, I thẳng hàng

19 tháng 2 2020

Ai trả lời giúp mình với mình đang cần gấp

19 tháng 2 2020

a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
 Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
    Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
      góc CBD + góc ABD = góc ABC
      góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
      BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9   = 25
=> BD2         = 25 - 9
=> BD2         = 16
=> BD2         = \(\sqrt{14}\)   
=> BD           = 4cm
Vậy a)... b)... c)... d)...

a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó:ΔBEC=ΔCDB

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó:ΔABD=ΔACE

Suy ra: AD=AE

c: Ta có: ΔBEC=ΔCDB

nên \(\widehat{IBC}=\widehat{ICB}\)

hayΔIBC cân tại I

Xét ΔABI và ΔACI có

AB=AC

AI chung

BI=CI

Do đó:ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

d: Xét ΔABC có AE/AB=AD/AC

nên DE//BC