K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

a) Xét tam giác BCE vuông tại E và tam giác CBD vuông tại D:

BC chung.

Góc B = Góc C (Tam giác ABC cân tại A).

=> Tam giác BCE = Tam giác CBD (cạnh huyền - góc nhọn).

b) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E:

Góc A chung.

AB = AC (Tam giác ABC cân tại A).

=> Tam giác ABD = Tam giác ACE (cạnh huyền - góc nhọn).

=> Góc ABD = Góc ACE (2 góc tương ứng).

Xét tam giác BEK và tam giác CDK:

Góc EBK = Góc DCK (Góc ABD = Góc ACE).

BE = CD (Tam giác BCE = Tam giác CBD).

Góc BEK = Góc CDK (= 90o).

=> Tam giác BEK = Tam giác CDK (g - c - g).

c) Xét tam giác ABC:

BD là đường cao (BD vuông góc với AC).

CE là đường cao (CE vuông góc với AB).

BD cắt CE tại K (gt).

=> K là trực tâm.

=> AK là đường cao.

Xét tam giác ABC cân tại A: AK là đường cao (cmt).

=> AK là đường phân giác góc BAC (Tính chất các đường trong tam giác cân).

a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có 

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔBEC=ΔCDB

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

BD=CE

Do đó: ΔABD=ΔACE

Xét ΔBEK vuông tại E và ΔCDK vuông tại D có

EB=DC

\(\widehat{EBK}=\widehat{DCK}\)

Do đó: ΔBEK=ΔCDK

c: Xét ΔBAK và ΔCAK có 

BA=CA

AK chung

BK=CK

Do đó: ΔBAK=ΔCAK

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)

hay AK là tia phân giác của góc BAC

7 tháng 2 2020

giúp mk với các bạn ơi mk phải đi học thêm

7 tháng 2 2020

A B C I E D K _ _ + +

a) Xét \(\Delta\)BCE và \(\Delta\)BCD có:

CEB = BDC (= 90o)

BC: chung

EBC = DCB (\(\Delta\)ABC cân)

\(\Rightarrow\Delta\)BCE = \(\Delta\)BCD (ch-gn)

b) Xét \(\Delta\)BEK và \(\Delta\)CDK có:

BEK = CDK (= 90o)

EB = DC (\(\Delta\)BCE = \(\Delta\)BCD)

EKB = CKD (đối đỉnh)

\(\Rightarrow\Delta\) BEK = \(\Delta\)CDK (cgv-gn)

c) Ta có: 

AB = AE + EB

AC = AD + DC

Mà AB = AC (\(\Delta\)ABC cân), EB = DC (\(\Delta\)BCE = \(\Delta\)BCD)

\(\Rightarrow\)AE = AD

Xét \(\Delta\)AKE và \(\Delta\)AKD có: 

AEK = ADK (= 90o)

AE = AD (cmt)

AK: chung

\(\Rightarrow\)\(\Delta\) AKE = \(\Delta\)AKD (ch-cgv)

\(\Rightarrow\)KAE = KAD (2 góc tương ứng)

\(\Rightarrow\)AK là phân giác BAC

d) Xét \(\Delta\)AIB và \(\Delta\)AIC có:

AB = AC (\(\Delta\)ABC cân)

AI: chung

IB = IC (I: trung điểm BC)

\(\Rightarrow\)\(\Delta\) AIB = \(\Delta\)AIC (c.c.c)

\(\Rightarrow\)IAB = IAC (2 góc tương ứng)

\(\Rightarrow\)AI là phân giác BAC

Ta có:

+) AK là phân giác BAC

+) AI là phân giác BAC

\(\Rightarrow\)A, K, I thẳng hàng

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :Tam giác ADB bằng tam giác AECTam giác ADK bằng tam giác AEKAK là tia phân giác của góc ABài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )      A . CMR : AH = AK      B . Gọi I là giao điểm của BH và CK. CMR : AI là...
Đọc tiếp

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :

  1. Tam giác ADB bằng tam giác AEC
  2. Tam giác ADK bằng tam giác AEK
  3. AK là tia phân giác của góc A

Bài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )

      A . CMR : AH = AK

      B . Gọi I là giao điểm của BH và CK. CMR : AI là phân giác của góc A

      C . Gọi M là trung điểm của BC. CMR : AM vuông góc với BC

Bài 4 : Cho tam giác BFC cân tại B. Kẻ FE vuông góc với BC tại E, CA vuông góc với BF tại A.

a)      CMR: Tam giác BEF = tam giác BAC

b)     FE cắt CA tại D. CMR : BD là tia phân giác của góc ABC

c)      Gọi M là trung điểm của FC. CMR: BM vuông góc với AE

0
28 tháng 8 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔADB vuông tại D và ΔAEC vuông tại E, ta có:

AB = AC (giả thiết)

∠(BAC) chung

⇒ ΔADB = ΔAEC (cạnh huyền, góc nhọn)

⇒ AD = AE (hai cạnh tương ứng)

Xét ΔADK vuông tại D và ΔAEK vuông tại E có:

AD = AE (chứng minh trên)

AK cạnh chung

⇒ ΔADK = ΔAEK (cạnh huyền, cạnh góc vuông)

⇒ ∠(DAK) = ∠(EAK) (hai góc tương ứng)

Vậy AK là tia phân giác của góc BAC.

12 tháng 2 2019

b,Xét 2 tam giác vuông AEC và ADB có :
AB = AC (gt)
^A : góc chung
=>  tam giác AEC =tam giác ADB ( cạnh huyền - góc nhọn)
=> AE = AD ( 2 cạnh tương ứng )
Xét 2 tam giác vuông AEK và ADK có :
AK : cạnh chung
AE = AD ( cmt)
=> tam giác  AEK = tam giác ADK  ( cạnh huyền - cạnh góc vuông )
=> ^EAK = ^DAK ( 2 góc tương ứng )
=> AK là tia phân giác của góc A

22 tháng 5 2017

1 2 A B C E D K

Xét hai tam giác ADB và AEC có:

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{A}\): góc chung

Vậy: \(\Delta ADB=\Delta AEC\left(ch-gn\right)\)

Suy ra: AD = AE (hai cạnh tương ứng)

Xét hai tam giác vuông ADK và AEK có:

AK: cạnh huyền chung

AD = AE (cmt)

Vậy: \(\Delta ADK=\Delta AEK\left(ch-cgv\right)\)

Suy ra: \(\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)

Do đó: AK là tia phân giác của góc A.

31 tháng 1 2019

A B C D E K 1 2 1 2 1 2

Giải

Xét tam giác EBC và tam giác DBC có:

E=D=90

B=C(gt)

BC là cạnh chung

=>tam giacs EBC=tam giác DBC( cạnh huyền-góc nhọn)

=>EC=DB( 2 cạnh TƯ)

Xét tam giác AEC và tam giác ADB có;

AB=AC(gt)

EC=BK(cmt)

AK cạnh chung

=> tam giác AEC=tam giác ADB(c.c.c)

=>B1=C1

Xét tam giác ABKvaf tam giác ACK có

AB=AC(gt)

AK chung

B1=C1(cmt)

=>tam giavs ABK=tam giác ACK(c.g.c)

=>A1=A2

=>AK là tia pg của góc A

(cmt: chứng minh trên)

3 tháng 2 2017

sao khong ai giup vay