Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác cân đường trung tuyến đồng thời là đường cao
\(BM=\dfrac{1}{2}BC=5cm\)
Áp dụng định lí Pytago vào tam giác vuông AMB, ta có:
\(AM=\sqrt{AB-BM}=\sqrt{13^2-5^2}=12cm\)
dung pytato
vuông tại A tức BC là cạnh huyền
AC^2=13^2-12^2=25
AC=5
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Có BM = BC/2 = 6cm
Áp dụng định lí Pytago trong tam giác vuông ABM có:
AM2 = AB2 - BM2 = 102 - 62 = 64 ⇒ AM = 8m. Chọn C
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
Do tam giác ABC cân tại A nên AM là đường trung tuyến đồng thời là đường cao. BM=1/2 BC=5cm
Áp dụng định lí Pytago trong tam giác ABM ta có:
AB2 = BC2 + BM2 = 122 + 52 = 169 ⇒ AB = 13cm. Chọn B