Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b.
Ta có tam giác EOH cân tại O
=> góc OEH=goc OHE
=> góc OHE= góc EHB (vì AHB cân Có HE là đường cao đồng thời là đường phân giác )
xét tứ giác EHDB nt
có gócEHB=gócEDB (cùng chắn EB)
=> góc OEH=gócEDB
Xét ttam giác EHD cân tại H ( H là trực tâm trong tam giác ABC cân)
có góc HED=góc HDE
mà góc HDE+gocEDB=90độ
=> góc HED+gocOEH=90độ
<=>OE vuông góc ED
câu c.
Xét tam giác BDA vuong tại D
AB2=AD2+DB2 (pytago)
AD2=AB2-BD2
AD2=169-25
AD2=144
AD=12
Xet tam giác OED vuông tại E có:
tam giác EHD cân => tam giác HEO cân ( trong tam giác vuông đường trung tuyến là một đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện, sẽ chia ra 2 cạch = nhau )
Xét (O) có
O là trung điểm AH
=>OA=OH
Ta lại có H là trung điểm OD
do đó OA=OH=HD
mà AD=12
=>OA=OH=HD=12/3
=>OA=4cm
a: Ta có: D là tâm đường tròn đường kính BC
=>D là trung điểm của BC
=>BD=5cm
=>AD=12cm
b: Xét (D) có
ΔBFC nội tiếp
BC là đường kính
Do đó; ΔBFC vuông tại F
Xét (D) có
ΔBEC nội tiếp
BC là đường kính
Do đó:ΔBCE vuông tại E
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
a: Xét tứ giác BOCE có \(\widehat{EBO}+\widehat{ECO}=90^0+90^0=180^0\)
nên BOCE là tứ giác nội tiếp đường tròn đường kính EO
Tâm là trung điểm của EO
Bán kính là EO/2
b: Xét (O) có
DA,DC là các tiếp tuyến
Do đó: DA=DC
=>D nằm trên đường trung trực của AC
Xét (O) có
DA,DC là các tiếp tuyến
Do đó: OD là phân giác của góc AOC
=>\(\widehat{AOC}=2\cdot\widehat{COD}\)
Xét (O) có
EC,EB là các tiếp tuyến
Do đó: OE là phân giác của góc COB
=>\(\widehat{COB}=2\cdot\widehat{COE}\)
Xét (O) có
EC,EB là các tiếp tuyến
Do đó: EC=EB
Ta có: \(\widehat{COA}+\widehat{COB}=180^0\)
=>\(2\cdot\left(\widehat{COD}+\widehat{COE}\right)=180^0\)
=>\(2\cdot\widehat{DOE}=180^0\)
=>\(\widehat{DOE}=90^0\)
Xét ΔDOE vuông tại O có OC là đường cao
nên \(CD\cdot CE=OC^2\)
mà CD=DA và CE=EB
nên \(DA\cdot EB=OC^2\)
=>\(4\cdot DA\cdot EB=4\cdot OC^2=\left(2\cdot OC\right)^2=AB^2\)
a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ
=>CE vuông góc AB, BD vuông góc AC
góc AEH=góc ADH=90 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
b: Gọi giao của AH với BC là N
=>AH vuông góc BC tại N
góc IEO=góc IEH+góc OEH
=góc IHE+góc OCE
=90 độ-góc OCE+góc OCE=90 độ
=>IE là tiếp tuyến của (O)
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN
a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC
=> OA=OB=OC và O là trung điểm của BC
=> Tam giác ABC vuông tại A
=> góc BAC = 90 độ
b) DO tam giác HAK nội tiếp đường tròn (I)
Lại có góc HAK = 90 độ
=> HK là đường kính của (I)
=> HK đi qua I
=> H,I,K thẳng hàng
c) Đề bài ghi ko rõ
d) 3 điểm nào?
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>CF\(\perp\)FB tại F
=>CF\(\perp\)AB tại F
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC(1)
ΔABC cân tại A
mà AD là đường trung tuyến
nên AD\(\perp\)BC(2)
Từ (1),(2) suy ra A,H,D thẳng hàng
hay AD\(\perp\)BC tại D
Gọi I là trung điểm của AH
=>I là tâm của đường tròn đường kính AH
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp đường tròn đường kính AH
=>A,E,H,F cùng thuộc đường tròn tâm I, đường kính AH
b: IE=IH
=>ΔIEH cân tại I
=>\(\widehat{IHE}=\widehat{IEH}\)
mà \(\widehat{IHE}=\widehat{BHD}\)(hai góc đối đỉnh)
và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{EBC}\right)\)
nên \(\widehat{IEH}=\widehat{BCE}\)
ΔEBC vuông tại E
mà ED là đường trung tuyến
nên DB=DE
=>ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
\(\widehat{IED}=\widehat{IEB}+\widehat{DEB}\)
\(=\widehat{IEH}+\widehat{DEB}\)
\(=\widehat{EBC}+\widehat{ECB}=90^0\)
=>DE là tiếp tuyến của (I)
a, xét tam giác BFC có
BC là đường kính của(O)
=>tam giác BFC vuông tại F=>góc BFC=90(độ)
xét tam giác CEB có
BC là đường kính của (O)
=>tam giác CEB vuống tại E=>CEB=90(độ)
=> tứ giác BCEF nội tiếp đường tròn đường kính BC có tâm (D)
=> 4 điểm B,C,E,F cùng thuộc 1 đường tròn