Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha bạn!
Cm:
a)Xét \(\Delta ABD\) và \(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90\)độ
\(\widehat{A}\)chung
AB=AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\)(cạnh huyền-góc nhọn)
=> AD=AE (2 cạnh tương ứng)
(ĐPCM)
b) Vì AD=AE(cmt) =>\(\Delta ADE\)cân tại A
=> \(\widehat{AED}=\widehat{ADE}\)
\(\Delta ADE\)có: \(\widehat{A}+\widehat{AED}+\widehat{ADE}=180\)độ
\(\Rightarrow\widehat{AED}=\frac{180^0-\widehat{A}}{2}\)(1)
\(\Delta ABC\)cân tại A => \(\widehat{ABC}=\widehat{ACB}\)
\(\Delta ABC\)có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)
Mà 2 góc này ở vị trí đồng vị
=>DE//BC (đpcm)
c) Xét \(\Delta AIE\)và \(\Delta AID\)có:
\(\widehat{AEI}=\widehat{ADI}=90^0\)
AI chung
AE=AD (cmt)
=> \(\Delta AIE\)=\(\Delta AID\)(cạnh huyền-cạnh góc vuông)
=> \(\widehat{EAI}=\widehat{DAI}\)(2 góc tương ứng)
=> AI là tia phân giác của góc BAC (3)
Xét \(\Delta ABM\)và \(\Delta ACM\)có:
AM chung
BM=CM (gt)
AB=AC (gt)
=>\(\Delta ABM\)=\(\Delta ACM\)(c.c.c)
=>\(\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)
=>AM là tia phân giác của góc BAC (4)
Từ (3) và (4) => A,I,M thẳng hàng (đpcm)
Câu d tớ chịu!
*Hình của mình có thể không đẹp lắm! Thông cảm ^_^ *
a, +,Xét 2 tam giác vuông AEC và ADB ta có
A: góc chung
góc AEC= góc ADB (=90 độ)
=> Tam giác AEC= tam giác ADB
=> AD=AE
b,+,Vì tam giác AEC= tam giác ADB nên: góc ABD= góc ACE.
+,Ta có: ABC= ABD+DBC
ACB= ACE+ECB
mà ABC= ACB, ABD=ACE nên DBC= ECB.
+,Vì góc DBC= góc ECB nên tam giác BIC cân tại I --> BI=CI.
+,Xét tam giác ABI và tam giác ACI có:
AB=AC
góc ABI= góc ACI
BI=CI
=> tam giác ABI= tam giác ACI
=> góc BAI= góc CAI
=> AI là phân giác của BAC. (1)
c, +,Ta có: góc AED= 180 độ- góc A/ 2
góc ABC= 180 độ- góc A/ 2
=> AED=ABC (vị trí đồng vị)
=> DE//BC.
d, +,Ta có tam giác ABC cân mà M là trung điểm BC nên AM vừa là đường trung tuyến vừa là đường phân giác (2)
+,Từ (1) và (2) suy ra: A,I,M thẳng hàng.
*Mình không biết là đúng hay không, có gì bạn bảo mình nha!*
*Phần e mình không biết làm, thông cảm xíu ^_^ *
chị làm đây ko bt đúng hay sai đâu nha
xét tam giác ABC có BD vuông góc với AC
CE vuông góc với AB
hai đường thẳng này cát nhau tại I
suy ra I là trực tâm của tam giác ABC
suy ra AI vuông góc với BC(1)
Mặt khác, M là trung điểm của BC=> AM là đường trung tuyến của tam giác ABC
mà trong 1 tam giác cân đường trung tuyến đồng thời là đường cao
<=> AM cũng là đường cao của tam giác ABC
=> AM vuông góc với BC(2)
từ (1)(2) ta có A,I,M thẳng hàng
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC