K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

A B C

Áp dụng định lý Pytago ta có:

        \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=10\)

\(sinB=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}\)     \(\Rightarrow\)\(cosC=\frac{4}{5}\)

\(cosB=\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\)    \(\Rightarrow\) \(sinC=\frac{3}{5}\)

\(tanB=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}\)     \(\Rightarrow\)\(cotC=\frac{4}{3}\)

\(cotB=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)      \(\Rightarrow\)\(tanC=\frac{3}{4}\)

20 tháng 7 2018

Cảm ơn nhiều nhé ^^ . mình rất ngu toán . Được bạn giúp thật tốt quá

20 tháng 10 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

2 tháng 8 2021

pytago=>\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(=>\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=0,8=\cos C\)

\(=>\cos B=\dfrac{AB}{BC}=\dfrac{6}{10}=0,6=\sin C\)

\(=>\tan B=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}=\cot B\)

\(=>\cot B=\dfrac{AB}{AC}=\dfrac{3}{4}=\tan C\)

NV
2 tháng 8 2021

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(\Rightarrow sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

\(cosB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\)

\(cotB=\dfrac{AB}{AC}=\dfrac{3}{4}\)

Do tam giác ABC vuông tại A \(\Rightarrow C=90^0-B\)

\(\Rightarrow sinC=sin\left(90^0-B\right)=cosB=\dfrac{3}{5}\)

\(cosC=cos\left(90^0-B\right)=sinB=\dfrac{4}{5}\)

\(tanC=tan\left(90^0-B\right)=cotB=\dfrac{3}{4}\)

2 tháng 10 2018

A B H C

AD định lí Pytago vào tam giác vuông HAC , ta có 

\(AH=\sqrt{AC^2-HC^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)

Ta có sin C = AH/ AC = 3/5 

=> \(\widehat{C}\approx36^o52'\)

=> \(\widehat{B}=90^o-\widehat{C}\approx90^o-36^o52'=53^o8'\)

BH = cot B . AH \(\approx2,25\left(cm\right)\) 

=> BC = BH + CH = 2,25 + 4 = 6, 25 cm

AB = sin C. BC \(\approx3,75\left(cm\right)\)

23 tháng 8 2021

hình đơn giản bạn tự vẽ:)

Áp dụng định lý Pytagoras ta có : BC2 = AB2 + AC2 = 32 + 42 = 25 => BC = 5cm

Ta có : \(\sin B=\frac{AC}{BC}=\frac{4}{5};\cos B=\frac{AB}{BC}=\frac{3}{5};\tan B=\frac{AC}{AB}=\frac{4}{3};\cot B=\frac{AB}{AC}=\frac{3}{4}\)

=> \(\sin C=\cos B=\frac{3}{5};\cos C=\sin B=\frac{4}{5};\tan C=\cot B=\frac{3}{4};\cot C=\tan B=\frac{4}{3}\)

19 tháng 10 2021

\(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\left(pytago\right)\\ \sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

22 tháng 7 2023

\(ab=8;ac=15\)

\(\Rightarrow\dfrac{b}{c}=\dfrac{8}{15}\)

\(tanB=\dfrac{b}{c}=\dfrac{8}{15}\Rightarrow cotB=\dfrac{1}{tanB}=\dfrac{15}{8}\left(tanB.cotB=1\right)\)

\(1+tan^2B=\dfrac{1}{cos^2B}\Rightarrow cos^2B=\dfrac{1}{1+tan^2B}\)

\(\Rightarrow cos^2B=\dfrac{1}{1+\dfrac{64}{225}}\dfrac{1}{\dfrac{289}{225}}=\dfrac{225}{289}\)

\(\Rightarrow cosB=\sqrt[]{\dfrac{225}{289}}=\dfrac{15}{17}\)

\(tanB=\dfrac{sinB}{cosB}\Rightarrow sinB=tanB.cosC=\dfrac{8}{15}.\dfrac{15}{17}\)

\(\Rightarrow sinB=\dfrac{8}{17}\)

Vì \(B+C=90^o\Rightarrow C=90^o-B\)

\(\Rightarrow\left\{{}\begin{matrix}sinC=cosB=\dfrac{15}{17}\\cosC=sinB=\dfrac{8}{17}\\tanC=cotB=\dfrac{15}{8}\\cotC=tanB=\dfrac{8}{15}\end{matrix}\right.\)

22 tháng 7 2023

Để tính các tỉ số lượng giác của góc B, ta sử dụng định nghĩa của các tỉ số lượng giác: sin(B) = cạnh đối diện / cạnh huyền = AC / AB = 15 / 8 cos(B) = cạnh kề / cạnh huyền = BC / AB = ? tan(B) = cạnh đối diện / cạnh kề = AC / BC = ? Để tính tỉ số lượng giác của góc C, ta sử dụng định nghĩa của các tỉ số lượng giác: sin(C) = cạnh đối diện / cạnh huyền = AB / AC = 8 / 15 cos(C) = cạnh kề / cạnh huyền = BC / AC = ? tan(C) = cạnh đối diện / cạnh kề = AB / BC = ? Tuy nhiên, để tính các tỉ số lượng giác của góc C, ta cần tìm giá trị của cạnh BC. Ta có thể sử dụng định lý Pythagoras trong tam giác vuông để tìm giá trị này: BC^2 = AC^2 - AB^2 BC^2 = 15^2 - 8^2 BC^2 = 225 - 64 BC^2 = 161 BC = √161 Sau đó, ta có thể tính các tỉ số lượng giác của góc B và góc C: sin(B) = 15 / 8 cos(B) = BC / AB = √161 / 8 tan(B) = 15 / √161 sin(C) = 8 / 15 cos(C) = BC / AC = √161 / 15 tan(C) = 8 / √161