K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

A B C I H K 1 2

Giải:
Xét \(\Delta AHI,\Delta AKI\) có:
\(\widehat{AHI}=\widehat{AKI}=90^o\)

AI: cạnh chung

\(\widehat{A_1}=\widehat{A_2}\left(=\frac{1}{2}\widehat{A}\right)\)

\(\Rightarrow\Delta AHI=\Delta AKI\) ( c.huyền - g.nhọn )

\(\Rightarrow HI=KI\) ( cạnh t/ứng ) (1)

Xét \(\Delta BHI,\Delta CKI\) có:
IB = IC ( gt )

\(\widehat{BHI}=\widehat{CKI}=90^o\)

IH = IK ( theo (1) )

\(\Rightarrow\Delta BHI=\Delta CKI\) ( c.huyền - c.g.vuông)

\(\Rightarrow BH=CK\) ( cạnh t/ứng ) ( đpcm )

Vậy...

16 tháng 7 2023

ai giúp mình với làm ơn

a: AH<AD

=>H nằm giữa B và D

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

=>EA=ED 

mà BA=BD

nên BE là trung trực của AD

c: góc CAD+góc BAD=90 độ

góc HAD+góc BDA=90 độ

mà góc BAD=góc BDA

nên góc CAD=góc HAD

=>AD là phân giác của góc HAC

1 tháng 5 2016

mik nghĩ câu a.b. bn làm đc,

c,BM=MC(AM là trung tuyến )=>AM c~ là đường cao(đặc biêt của tam giác cân)    (1)

 xét 2 tam giácvuông BDM và ta giác vuông CDM 

  MD chung,

MB=MC(trung tuyến AM)

=>2 tam giác vuông BDM=CDM(2 cạnh góc vuông)

=>DM là trung tuyến của BC   (2)

từ 1 và 2,ta thấy A,M,D đều thuộc trung tuyến của BC,=>A,M,D thẳng hàng

mik làm sai ở đâu thì nhắc nha

 

 

 

1 tháng 5 2016

leuleucó bn nào lp 7 ko???

15 tháng 2 2019

Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên  E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .

Do đó  E P Q ^ + P C K ^ = 90 0 , nên  P K ⊥ A C .

7 tháng 5 2018
https://i.imgur.com/2sEdbwg.jpg
16 tháng 9 2021

\(\widehat{BKC}=\widehat{BHC}\left(=90^0\right)\) nên HKBC nội tiếp đường tròn

a: Xét (O) có

góc BEC, góc BDC đều là các góc nội tiếp chắn nửa đường tròn

=>góc BEC=góc BDC=90 độ

=>CE vuông góc AB, BD vuông góc AC

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc BEH+góc BFH=180 độ

=>BEHF nội tiếp
b: Xét ΔHCB có CO/CB=CM/CH

nên OM//BH

=>góc COM=góc CBH

=>góc COM=góc FEC

=>góc MOF+góc FEM=180 độ

=>OMEF nội tiếp

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE