K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:
Vì $\frac{AB}{AC}=\frac{3}{4}$ nên đặt $AB=3a; AC=4a$ với $a>0$

Áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$

$\frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{1}{81}$

$\frac{25}{144a^2}=\frac{1}{81}$

$a=3,75$ (cm)

Do đó:

$AB=3a=11,25$ (cm)

$AC=4a=15$ (cm)

$BC=\frac{AB.AC}{AH}=\frac{11,25.15}{9}=18,75$ (cm)

Áp dụng định lý Pitago:

$BH=\sqrt{AB^2-AH^2}=\sqrt{11,25^2-9^2}=6,75$ (cm)

$CH=BC-BH=18,75-6,75=12$ (cm)
 

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Hình vẽ:

29 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC ta có:

B C 2 = A B 2 + A C 2 = 6 2 + 8 2  = 36 + 64 = 100 (cm)

Suy ra: BC = 100 = 10 (cm)

Ta có: sinC = AB/BC = 6/10 = 0,6

a: AC=căn 5^2+12^2=13cm

sin C=AB/AC=12/13

cos C=5/13

tan C=12/5

cot C=1:12/5=5/12

b: AC=căn 10^2+3^2=căn 109(cm)

sin C=AB/AC=3/căn 109

cos C=BC/AC=10/căn 109

tan C=AB/BC=3/10

cot C=10/3

c: BC=căn 5^2-3^2=4cm

sin C=AB/AC=3/5

cos C=4/5

tan C=3/4

cot C=4/3

a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

15 tháng 11 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)