K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2023

a, từ A=90°+B

->B=90°_A

Xét Tam giác AHC vuông tại H

ACH=90°-A

->B=ACH

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc ABH=góc CAH

=>ΔABH đồng dạng với ΔCAH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

26 tháng 3 2022

Giúp mình với

8 tháng 4 2022

a)\(ABC\) vuông tại \(A\)\(\Rightarrow\)\(BC^2=AB^2+AC^2\)

\(\Rightarrow\)\(BC=\)\(\sqrt{AB^2+AC^2}\) \(=\)\(\sqrt{80^2+60^2}\)\(=100^2\)\(\Rightarrow\)\(BC=100cm\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{60^2}+\dfrac{1}{80^2}=\dfrac{1}{48^2}\Rightarrow AH=48\)

\(AI\) là tia phân giác của góc \(BAC\)\(\Rightarrow\)\(\dfrac{BI}{\text{CI }}=\dfrac{AB}{AC}=\dfrac{80}{60}=\dfrac{4}{3}\Rightarrow BI=\dfrac{4}{3}CI\)

Mà \(BI+CI=BC=100\)

\(\Rightarrow\)\(\dfrac{4}{3}CI+CI=100\Leftrightarrow\dfrac{7}{3}CI=\dfrac{300}{7}\)

\(\Rightarrow\)\(BI=BC-CI=100-\)\(\dfrac{300}{7}=\dfrac{400}{7}\)

b) Ta có Góc \(ACH + CAH = 90^o\)

             Góc \(CAH + HAM = 90^o\)

\(\Rightarrow\)\(ACH=HAM\)

Xét \(Δ MAH\) và \(ΔNCH,\) có :

\(CHN=AHM(=45^o)\)

\(ACH=HAM\)

\(\Rightarrow\)\(ΔMAH\) đồng dạng vs \(ΔNCH\)

\(\Rightarrow\)\(\dfrac{CN}{AM}=\dfrac{CH}{AH}\)