Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại E và F
Theo định lý Thales ta có: \(\frac{BP}{PC}=\frac{AE}{AF},\frac{QC}{QA}=\frac{AF}{BC},\frac{BC}{AE}=\frac{RA}{RB}\)
Nhân 3 đẳng thức vs nhau ta đc:
\(\frac{BP}{PC}.\frac{QC}{QA}.\frac{RA}{RB}=\frac{AE}{AF}.\frac{AF}{BC}.\frac{BC}{AE}=1\left(DPCM\right)\)
Từ A kẻ AM // BC (M ∈ RP )
Xét △QPC có AM // PC
\(\Rightarrow\frac{QC}{QA}=\frac{PC}{AM}\)(Hệ quả định lí Ta-lét) (1)
Xét △RBP có AM // BP
\(\Rightarrow\frac{RA}{RB}=\frac{AM}{BP}\)(Hệ quả định lí Ta-lét) (2)
Từ (1) và (2) suy ra :
\(\frac{BP}{PC}\cdot\frac{CQ}{QA}\cdot\frac{AR}{RB}=\frac{BP}{PC}\cdot\frac{PC}{AM}\cdot\frac{AM}{BP}=1\)(ĐPCM)
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a: Xét tứ giác MBPA có
N là trung điểm của MP
N là trung điểm của BA
Do đó: MBPA là hình bình hành
Kẻ CG//AB(G thuộc QP)
Xét ΔRBP có CG//RP
nên PC/PB=CG/RB=PG/PR
Xét ΔQAR và ΔQCG có
góc QAR=góc QCG
góc AQR=góc CQG
=>ΔQAR đồng đạng với ΔQCG
=>QA/QC=QR/QG=AR/CG
PB*PC*QC/QA=RB/CG*CG/AR=RB/RA
=>PB/PC*QC/QA*RA/RB=1