K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Xét \(\Delta ABD\) và \(\Delta HBD\) có:

\(\widehat{BAD}=\widehat{BHD}=90^0\)

\(BD\) chung

\(\widehat{ABD}=\widehat{HBD}\) (tính chất phân giác)

\(\Rightarrow\Delta ABD=\Delta HBD\) (ch - gn)

c) Ta có \(\Delta ABD=\Delta HBD\Rightarrow AD=HD\)

Mà \(HD< DC\) (do \(\Delta HDC\) vuông tại \(H\))

\(\Rightarrow DA< DC\) 

12 tháng 5 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AC^2+AB^2}=10cm\)

b, Xét tam giác BAD và tam giác BHD có 

BD _ chung ; ^ABD = ^HBD ; ^BAD = ^BHD = 900

Vậy tam giác BAD = tam giác BHD ( ch-gn) 

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)

b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)

26 tháng 3 2021

Tam giác ACBD là cái gì vậy bạn

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

23 tháng 3 2021

A B C D H

D' là giao điểm của BD và AH bạn nhớ thêm vào hình vẽ nhé!

Áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+62

BC2=36+36

BC2=72

⇒BC=\(\sqrt{72}\)

xét hai tam giác vuông AND và HBD có:

\(\widehat{DBH}\)=\(\widehat{DBA}\) (BC là tia phân giác của \(\widehat{ABH}\) )

BD là cạnh chung

⇒ΔAND=ΔHBD(cạnh-huyền-góc-nhọn)

⇒AB=HB(2 cạnh tương ứng)

⇒ΔABH là tam giác cân

gọi D' là giao điểm của AH và BD ta có:

xét ΔABD' và ΔHBD' có:

\(\widehat{DBH}\) =\(\widehat{DBA}\)  (BC là tia phân giác của\(\widehat{HBA}\) )

AB=HB(ΔABH cân tại B)

\(\widehat{AHB}\) =\(\widehat{HAB}\) (ΔABH cân tại B)

⇒ ΔABD' = ΔHBD' (G-C-G)

⇒HD'=AD'(2 cạnh tương ứng)

vì  ΔABD' = ΔHBD' 

⇒ \(\widehat{HD'B}\) =\(\widehat{AD'B}\) (2 góc tương ứng)(1)

Mà \(\widehat{HD'B}\) +\(\widehat{AD'B}\) (2 góc kề bù)(2)

Từ (1)và(2) ⇒ D'B⊥AH(3)

Từ (1)và(3) ⇒BD là đường trung trực của AH

 

 

a: BC=10cm

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

5 tháng 3 2022

bn gì ơi bn có thể giải thích cách làm rõ ràng hơn được ko ạ