Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left|z+1+i\right|=\left|z+2i\right|\Leftrightarrow\left(a+1\right)^2+\left(b+1\right)^2+a^2+\left(b+2\right)^2\)
\(\Leftrightarrow b=a-1\)
khí đó : \(P=\left|z-2-3i\right|+\left|z+1\right|=\sqrt{\left(a-2\right)^2+\left(b-3\right)^2}+\sqrt{\left(a+1\right)^2+b^2}\)
\(\Leftrightarrow P=\sqrt{\left(a-2\right)^2+\left(a-4\right)^2}+\sqrt{\left(a+1\right)^2+\left(a-1\right)^2}\ge\sqrt{\left(2a-1\right)^2+\left(2a-5\right)^2}\)
dấu "=" xảy ra khi \(\dfrac{a-2}{a+1}=\dfrac{a-4}{a-1}=k>0\) \(\Leftrightarrow a\in\varnothing\) \(\Rightarrow\) không có giá trị của \(P=a+2b\)
Chọn D.
Ta có P = |2z + 1 = 2i| nên
Ta cần tìm giá trị lớn nhất, giá trị nhỏ nhất của:
Ta có z1 = 1 - 3i; z2 = -2 + i và z0 = -1/2 - i
Ta thấy:
Tính
Suy ra
Vậy Max P = 2.4 = 8 và
Chọn D.
Giả sử z=a+bi với a,b ∈ ℝ
Thay vào biểu thức ta được:
\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)
\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)
\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)
2.
Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?