Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\frac{k^2.\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}\)
\(=\frac{k^2\left(k+1\right)^2+2k\left(k+1\right)+1}{k^2\left(k+1\right)^2}=\frac{\left(k\left(k+1\right)+1\right)^2}{k^2\left(k+1\right)^2}\)
=> \(\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{k\left(k+1\right)+1}{k\left(k+1\right)}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)
=> \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}\)
\(=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{k}-\frac{1}{k+1}\)
\(=k+1-\frac{1}{k+1}\)
=> \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+....+\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{2017^2-1}{2017}\)
<=> \(k+1-\frac{1}{k+1}=2017-\frac{1}{2017}\)
\(\Leftrightarrow\left(k+1-2017\right)-\left(\frac{1}{k+1}-\frac{1}{2017}\right)=0\)
\(\Leftrightarrow\left(k-2016\right)\left(1+\frac{1}{2017.\left(k+1\right)}\right)=0\)
<=> k=2016
ta có \(\left(1+\frac{1}{k}-\frac{1}{k-1}\right)^2\)
= \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)\(+\frac{2}{k-1}-\frac{2}{k}-\frac{2}{k\left(k-1\right)}\)
=\(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2k-2k+2-2}{k\left(k-1\right)}\)
= \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
=> \(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}\)= \(1+\frac{1}{k-1}-\frac{1}{k}\)(đpcm)
Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)
Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs
Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
với \(a>0,b>0\)ta có \(\sqrt{a}.\sqrt{b}\le\frac{a+b}{2}\Rightarrow\frac{1}{\sqrt{a}.\sqrt{b}}\ge\frac{2}{a+b}\)
từ đó ta có : \(\frac{1}{\sqrt{k\left(2016-k\right)}}\ge\frac{2}{k+2016-k}\ge\frac{2}{2016}=\frac{1}{1008},\)với mọi \(k\in N^{\cdot}\)
Suy ra \(S_k\)\(\ge k.\frac{1}{1008}>k.\frac{1}{1018}\)(đpcm).
Ta có :\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+....+\frac{1}{2020}\right)\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{2019}-\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1010}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
\(\Rightarrow\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)
=> k = 1
=> k là số tự nhiên (đpcm)