K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Ta có :  \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Như vậy, cần chứng minh :

\(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)

Áp dụng BĐT Cô-si,ta có : 

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{a^2b^2c^2}=8abc\)

Vậy ta có điều phải chứng minh.

Dấu"=" xảy ra khi a = b = c

a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)

b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)

\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)

c: \(-\sqrt{75a^2b^3}\)

\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)