K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NL
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NK
1
12 tháng 6 2020
Ta có : \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
Như vậy, cần chứng minh :
\(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)
Áp dụng BĐT Cô-si,ta có :
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{a^2b^2c^2}=8abc\)
Vậy ta có điều phải chứng minh.
Dấu"=" xảy ra khi a = b = c
19 tháng 8 2023
a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)
b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)
\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)
c: \(-\sqrt{75a^2b^3}\)
\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)
HN
0
H
0