K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

A = 4 + 4² + 4³ + ... + 4²³ + 4²⁴

Số số hạng của A:

24 - 1 + 1 = 24

Do 24 ⋮ 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:

A = (4 + 4²) + (4³ + 4⁴) + ... + (4²³ + 4²⁴)

= 20 + 4².(4 + 4²) + ... + 4²².(4 + 4²)

= 20 + 4².20 + ... + 4²².20

= 20.(1 + 4² + ... + 4²²) ⋮ 20

Vậy A⋮  20 (1)

Do 24 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

A = (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4²² + 4²³ + 4²⁴)

= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4²².(1 + 4 + 4²)

= 4.21 + 4⁴.21 + ... + 4²².21

= 21.(4 + 4⁴ + ... + 4²²) ⋮ 21

Vậy A ⋮ 21 (2)

Từ (1) và (2) ⇒ A ⋮ 20 . 21 (do 20 và 21 nguyên tố cùng nhau)

⇒ A ⋮ 420

Vậy A chia hết cho 20; 21; 420

20 tháng 12 2023

loading...  loading...  

12 tháng 11 2018

lam duoc ko moi nguoi

18 tháng 12 2021

gải giúp mình với

15 tháng 9 2017

1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên 

19 tháng 7 2021

\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\) 

\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\) 

\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\) 

\(S=7.\left(2+2^4+...+2^{28}\right)\) 

⇒ \(S⋮7\)   ( điều phải chứng minh ) 

19 tháng 7 2021

S=21+22+23+...+230

S=(21+22+23)+(24+25+26)+...+(228+229+230)

S=7.2+7.24+...+7.228

S=7.(2+24+...+228)

⇒S⋮7

DD
26 tháng 10 2021

\(2^1+2^2+2^3+...+2^{2016}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2015}+2^{2016}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2015}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2015}\right)⋮3\)

\(2^1+2^2+2^3+...+2^{2016}\)

\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)

23 tháng 10 2021

\(S=5+5^2+5^3+...+5^{1992}\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{1991}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{1991}.6=6\left(5+5^3+...+5^{1991}\right)⋮6\)

b: \(B=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)⋮8\)

c: \(C=4^{39}\left(1+4+4^2\right)=4^{39}\cdot21=4^{38}\cdot84⋮28\)