Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3+3^2+...+3^{59}\)
\(3S=3+3^2+3^3+...+3^{60}\)
=> \(S=\frac{3^{60}-1}{2}\)
3^4 đồng dư với 1 ( mod 10) => 3^60 đồng dư với (3^4)^15 đồng dư với 1^15 đồng dư với 1 ( mod 10)
=> 3^60 - 1 có tận cùng là 0 => S có tận cùng là 5
Ta có: 31 = ...3
32 = ..9
33 = ..7
34 = ...1
35 = ...3
Vậy chu kì chữ số tận cùng của lũy thừa 3 có 4 số là 3,9,7,1.
Mà 20 : 4 = 5 ( không dư)
=> Chữ số tận cùng của 31 + 32 + ... + 320 là chữ số 1.
Mà trong tổng các số hạng của S còn có thêm chữ số 1 => Chữ số tận cùng của S = 2.
Mà không có số nào mà căn bậc hai có chữ số tận cùng là 2 nên S không phải là số chính phương.
S = 1 + 3 + 32 + 33 +...+ 320
3S= 3.(1+3+32+33+....320)
3S= 3+32+33+...+320+ 321
3S-S=321-1
2S=321-1
S=321- 1 / 2
321 chia cho 2 nhưng vẫn giữ nguyên s như thế nhé mk viết ra cho bạn hiểu thoi
Ta có nhận xét:các số mũ của các số hạng của tổng S đều liên tiếp nhau cách nhau 1 đơn vị bắt đầu từ 2 đến 60 nên sẽ có tận cùng là n
=> các lũy thừa của tổng có tận cùng = tận cùng của cơ số
=> chữ số tận cùng của tổng S = chữ số tận cùng của tổng
đến đây cậu tự viết mik lập luận đến đó rồi
tự viết nhá
ta thấy dãy trên có dạng
S=3+......9+......7+..1+.........3+...........9+............7+......1+...+...........3+...........9+...........7+..............1
=>cứ 4 số thì c/số tận cùng lại trở về lần lượt 3;9;7;1
=>c/số tận cùng của S là
(60:4)x(9+7+1)+[(60:4)+1]x3
=15x9+15x7+15x1+16x3
=135+105+15+48
=...........3
=> n=3
vậy chữ số n tận cùng của S =3