Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Leftrightarrow S=1-\frac{1}{n+3}\)
\(\Leftrightarrow S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}\)
\(\Rightarrow\frac{n+2}{n+3}< 1\Rightarrow S< 1\)
=>S= 1- 1/4 + 1/4 -1/7 + 1/7 - 1/10 +...+ 1/n - 1/(n+3)
=>S= 1- 1/(n+3)
=>S + 1/(n+3) = 1
=>S<1
\(S=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{n\left(n+3\right)}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}\)
\(=1-\frac{1}{n+3}\)
Ta có :
\(\frac{1}{n+3}>0\)
\(\Leftrightarrow-\frac{1}{n+3}< 0\)
\(\Leftrightarrow1-\frac{1}{n+3}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}\)
\(S=\frac{n+2}{n+3}\)
Vi \(n\inℕ^∗\)nên \(n+2< n+3\)
DO đó\(\frac{n+2}{n+3}< 1\)
Vậy S <1
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Rightarrow S=1-\frac{1}{n+3}\)
\(\Rightarrow S=\frac{n+3-1}{n+3}\)
\(\Rightarrow S=\frac{n+2}{n+3}\)
P/s: Đến đó thôi.......^.^
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+....+\frac{3}{n\cdot\left(n+3\right)}\)
\(S=\frac{4-1}{1\cdot4}+\frac{7-4}{4\cdot7}+\frac{10-7}{7\cdot10}+....+\frac{\left(n+3\right)-n}{n\cdot\left(n+3\right)}\)
\(S=\left(\frac{4}{1\cdot4}-\frac{1}{1\cdot4}\right)+\left(\frac{7}{4\cdot7}-\frac{4}{4\cdot7}\right)+\left(\frac{10}{7\cdot10}-\frac{7}{7\cdot10}\right)+.....+\left(\frac{n+3}{n\cdot\left(n+3\right)}-\frac{n}{n\cdot\left(n+3\right)}\right)\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}\)
\(S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+2}{n+3}\)
Câu 1 dễ thôi. Bạn tính tử, rồi tính mẫu sao cho khi phân phối ở cả tử và mẫu đều có phần thừa số có thể rút gọn cho nhau. Giờ mik bận quá nên ko thể giải dầy đủ. Thông cảm nha...
Câu 2: Cũng ko khó lắm đâu:
S=\(\frac{1}{1}\) - \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{7}\)+...+\(\frac{1}{n}\)-\(\frac{1}{n+3}\)
=1-\(\frac{1}{n+3}\)<1.
Vậy: S<1
Để làm dc bài sau, bạn nhớ giùm mik công thức: \(\frac{a}{b.\left(b+a\right)}\)=\(\frac{1}{b}\)-\(\frac{1}{b+a}\)
Câu 3: Đặt \(A=\frac{2003.2004-1}{2003.2004}\), \(B=\frac{2004.2005-1}{2004.2005}\)ta có:
\(A=\frac{2003.2004}{2003.2004}\)-\(\frac{1}{2003.2004}\)=1-\(\frac{1}{2003.2004}\)
\(B=\frac{2004.2005}{2004.2005}\)-\(\frac{1}{2004.2005}\)=1-\(\frac{1}{2004.2005}\)
Vì 2003.2004<2004.2005=>\(\frac{1}{2003.2004}\)>\(\frac{1}{2004.2005}\)
=>1-\(\frac{1}{2003.2004}\)<1-\(\frac{1}{2004.2005}\)
Vậy: \(\frac{2003.2004-1}{2003.2004}\)< \(\frac{2004.2005-1}{2004.2005}\)
Nhớ cho mik nha. Thanks
Ta có : \(S=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}\)
\(\Leftrightarrow S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=\frac{1}{1}-\frac{1}{n+3}\)
\(S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}<1\)
\(\Rightarrow\) S < 1 ( đpcm )
=> S = ( 1 -\(\frac{1}{4}\)) + ( \(\frac{1}{4}\)- \(\frac{1}{7}\)) +(\(\frac{1}{7}\)- \(\frac{1}{10}\)) +.....+ (\(\frac{1}{n}\)- \(\frac{1}{n+3}\))
=> S = 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{10}\)+......+ \(\frac{1}{n}\)- \(\frac{1}{n+3}\)
=> S = 1 - \(\frac{1}{n+3}\)
vậy S = 1- \(\frac{1}{n+3}\)