Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{49}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\frac{1}{40}.10+\frac{1}{50}.10+\frac{1}{60}.10< S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50.10}\)
\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}< S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)
\(\frac{1}{4}+\frac{1}{5}+\frac{3}{20}< \frac{1}{4}+\frac{1}{5}+\frac{1}{6}< S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{1}{3}+\frac{4}{15}+\frac{1}{5}\)
\(\frac{3}{5}< S< \frac{4}{5}\left(đpcm\right)\)
Ta có:
\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\left(có30số\right)\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{1}{60}\cdot30=\frac{1}{2}< \frac{4}{5}\)\(\Rightarrow S< \frac{4}{5}\)
Ta thấy các phân số của tổng S khi quy đồng mẫu số chứa lũy thừa của 2 với số mũ lớn nhất là 24
Như vậy, khi quy đồng mẫu số, các phân số của S đều có tử chẵn, chỉ có phân số \(\frac{1}{16}\) có tử lẻ
Do đó S có tử lẻ mẫu chẵn, không là số tự nhiên (đpcm)
Do \(\left|a\right|\ge0\Rightarrow b^5-b^4c\ge0\Rightarrow b^5\ge b^4c\Rightarrow b\ge c\)
Với \(b< 0\Rightarrow c< 0\left(KTM\right)\)
Với \(b=0\Rightarrow\left|a\right|=0\Rightarrow a=0\left(KTM\right)\)
Với \(b>0\Rightarrow a< 0\left(h\right)a=0\)
+) Với \(a=0\Rightarrow b-c=0\Rightarrow b=c>0\left(KTM\right)\)
+) Với \(a< 0\Rightarrow b>0;c=0\)
zZz Cool Kid zZz bài bạn có ý đúng nhưng vẫn sai một số lỗi
-) b ko thể bằng c
-) b=0 => |a|=0 là sai, vì b=0 nếu c âm thì -c vẫn dương => a > 0 vẫn tm
-) ở dòng thứ 5, b=c cùng lớn hơn 0 nhưng vẫn còn th âm bạn chưa xét
Ta có:\(\left|a\right|=b^4.\left(b-c\right)\)
Vì |a| không âm => b4.(b-c) không âm => b-c không âm vì b4 không âm
Mà trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương nên b > c => a khác 0
Xét b = 0 vì b>c nên c < 0 => a > 0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương
Xét c = 0 vì b>c nên b>0 => a<0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương
Vậy ... (tự kết luận)
Ta thấy S có 30 số hạng. Nhóm thành 3 nhóm, mỗi nhóm 10 số hạng
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\); \(S< \frac{47}{60}< \frac{48}{60}=\frac{4}{5}\) ( 1 )
\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}\); \(S>\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{3}{5}< S< \frac{4}{5}\)
Nhác quá ko muốn đánh lại nx,bạn tham khảo tại đây:
Câu hỏi của nuy - Toán lớp 6 - Học toán với OnlineMath