K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

a/

\(3S=3+3^2+3^3+3^4+...+3^{120}\)

\(2S=3S-S=3^{120}-1\Rightarrow S=\frac{3^{120}-1}{2}\)

b/ \(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

\(S=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{117}.13=13\left(1+3^3+...+3^{117}\right)\) chia hết cho 13

c/

\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(S=40+3^4.40+...+3^{116}.40=40\left(1+3^4+...+3^{116}\right)\) chia hết cho 40

6 tháng 1 2018

a,S=1+3+32+...+360

3S=3+32+33+...+361

3S-S=(3+32+33+...+361)-(1+3+32+...+360)

2S = 361 - 1

b,2S+1=361-1+1=361 = 3x-3

=>x-3=61=>x=64

c, S=1+3+32+...+360

=(1+3)+(32+33)+...+(359+360)

=4+32(1+3)+...+359(1+3)

=4+32.4+...+359.4

=4(1+32+...+359) chia hết cho 4

S=1+3+32+...+360

=(1+3+32)+....+(358+359+360)

=13+...+358(1+3+32)

=13+...+358.13

=13(1+...+358)

6 tháng 1 2018

còn S chia hết cho 10

29 tháng 5 2017

a)Ta có :

\(S=3+3^2+3^3+.................+3^{1998}\)(1998 số hạng)

\(\Rightarrow S=\left(3+3^2\right)+\left(3^3+3^4\right)+..............+\left(3^{1997}+3^{1998}\right)\)(999 nhóm)

\(\Rightarrow S=12+3^3\left(3+3^2\right)+.................+3^{1997}\left(3+3^2\right)\)

\(\Rightarrow S=12\left(1+3+3^2+.................+3^{1997}\right)\)

\(\Rightarrow S⋮12\rightarrowđpcm\)

b) Ta có :

\(S=3+3^2+3^3+......................+3^{1998}\)

\(\Rightarrow S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.............+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(\Rightarrow S=39+3^4\left(3+3^2+3^3\right)+....................+3^{1996}\left(3+3^2+3^3\right)\)

\(\Rightarrow S=39+3^4.39+................+3^{1996}.39\)

\(\Rightarrow S=39\left(1+3^4+............+3^{1996}\right)\)

\(\Rightarrow S⋮39\rightarrowđpcm\)

2 tháng 8 2015

a) S = 2 + 22 + 23 + ... + 2100

ta có: (2+22) + (23+24)+...+(299+2100)

          chc 3  + chc 3 +....+  chc 3

=> S chia hết cho 3

b) S = 2 + 22 + 23 + ... + 2100

ta có: (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)

                chc 15          +.......+    chc 15

=> S chia hết cho 15

chc nghĩa là chia hết cho nhak

2 tháng 5 2021

giúp ik