Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)
Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0. Suy ra: 28 số như thế thì tận cùng vẫn là 0.
Mà trong tổng (trừ số 1) có 30 số hạng.
=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)
A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)
Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9
Vậy A ko phải là số chính phương.
Tham khảo: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)
Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0.
Suy ra: 28 số như thế thì tận cùng vẫn là 0.
Mà trong tổng (trừ số 1) có 30 số hạng.
=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)
A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)
Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9 Vậy A ko phải là số chính phương.
3A=3+3^2+...+3^31
=> 2A= 3A-A
=> 2A= 3^31-1
=> A= (3^31-1):2
Xét 3^31 = (3^4)^7x3^3=87^7x27=(...1)x27=(....7)
=> A= [ (...7) -1 ] :2= (...6):2=(...3)
Vì số chính phương không tận cùng là 3 => A không phải số chính phương
A = (1 + 31 + 32 + 33) + (34 + 35 +36 + 37) + ...+ (324 + 325 + 326 + 327) + (328 + 229 + 330)
A = (1 + 31 + 32 + 33) + 34.(1 + 31 + 32 + 33) + ...+ 324.(1 + 31 + 32 + 33) + (328 + 229 + 330)
A = 40 + 34.40 + ....+ 324.40 + (328 + 229 + 330)
A = 40.(1 + 34 + ...+ 324) + (328 + 229 + 330)
Nhận xét: 40.(1 + 34 + ...+ 324) có tận cùng là 0
328 = (34)7 = 817 = (...1)
329 = 328.3 = (...1).3 = (....3)
330 = 328.32 = (...1).9 = (...9)
=> A = (...0) + (...1) + (....3) + (...9) = (....3)
A có tận cùng là chữ số 3 nên A không thể là số chính phương.
Ta có A = 1 + 3 + 32 + 33 + ... + 330
\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{31}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+3^4+...+3^{31}\right)-\left(1+3+3^2+3^3+...+3^{30}\right)\)
\(\Rightarrow2A=3^{31}-1\)
\(\Rightarrow A=\frac{3^{31}-1}{2}\)
Ta có 331 - 1 = 328.33 - 1 = (34)7 . 27 - 1 =
= (...1)7.27 - 1 = (...1).27 - 1 = (...7) - 1 = (...6)
\(\Rightarrow A=\frac{3^{31}-1}{2}=\frac{\overline{...6}}{2}=\overline{...3}\)
\(\Rightarrow\)A không là số chính phương
Ta có :
1 + 31 + 32 + 33 + 34 ... + 330
= 1 + 31 + 2 + 3 + 4 .. + 30
= 1 + 3465
Tận cùng của 3465
cứ 5 chữ số 3 nhân với nhau thì có tận cùng là 3 . Vì 465 chia hết cho 5 nên tận cùng của 3465 là 3
3 + 1 = 4 nên tận cùng của 1 + 3465 = 4
Các đặc điểm của số chính phương :
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.
- Khi phân tích một số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.
- Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.
- Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)(a-b).
- Số ước nguyên dương của số chính phương là một số lẻ.
- Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.
- Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...
S thỏa mãn các điều kiện trên nên S là số chính phương
A = (1 + 31 + 32 + 33) + (34 + 35 +36 + 37) + ...+ (324 + 325 + 326 + 327) + (328 + 229 + 330)
A = (1 + 31 + 32 + 33) + 34.(1 + 31 + 32 + 33) + ...+ 324.(1 + 31 + 32 + 33) + (328 + 229 + 330)
A = 40 + 34.40 + ....+ 324.40 + (328 + 229 + 330)
A = 40.(1 + 34 + ...+ 324) + (328 + 229 + 330)
Nhận xét: 40.(1 + 34 + ...+ 324) có tận cùng là 0
328 = (34)7 = 817 = (...1)
329 = 328.3 = (...1).3 = (....3)
330 = 328.32 = (...1).9 = (...9)
=> A = (...0) + (...1) + (....3) + (...9) = (....3)
A có tận cùng là chữ số 3 nên A không thể là số chính phương.
giải
A = (1 + 31 + 32 + 33) + (34 + 35 +36 + 37) + ...+ (324 + 325 + 326 + 327) + (328 + 229 + 330)
A = (1 + 31 + 32 + 33) + 34.(1 + 31 + 32 + 33) + ...+ 324.(1 + 31 + 32 + 33) + (328 + 229 + 330)
A = 40 + 34.40 + ....+ 324.40 + (328 + 229 + 330)
A = 40.(1 + 34 + ...+ 324) + (328 + 229 + 330)
328 = (34)7 = 817 = (...1)
329 = 328.3 = (...1).3 = (....3)
330 = 328.32 = (...1).9 = (...9)
=> A = (...0) + (...1) + (....3) + (...9) = (....3)
A có tận cùng là chữ số 3 nên A không thể là số chính phương.
hok tốt
thế thì chúc bạn may mắn nha
Trong câu hỏi tương tự nha"kaitolupin"