Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
Ta có : \(S=1+3+3^2+3^3+....+3^{30}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+....+3^{31}\)
\(\Rightarrow2S=3^{31}-1\)
\(\Rightarrow2S=3^{4\cdot7+3}-1\)
\(\Rightarrow2S=81^7\cdot27-1\)
\(\Rightarrow2S=\)\(\overline{...1\cdot}27-1\)
\(\Rightarrow2S=\overline{...27}\)\(-1\)
\(\Rightarrow2S=\overline{...6}\)
\(\Rightarrow S=\overline{...3}\)Hay S ko là SCP
S=1+3+32+33+...+320
3S=3+32+33+...+320+321
3S-S=321-1
2S=321-1
S=(321-1):2
Đặt S = 1+ 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 20 (1)
=> 3S = 3 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ... + 3 mũ 21 (2)
Lấy ( 2 ) trừ ( 1 ) vế theo vế , ta được :
3S - S = 3 mũ 21 - 1
2S = 3 mũ 21 - 1
S = ( 3 mũ 21 - 1 ) : 2
ĐÂY LÀ LỜI GIẢI CHI TIẾT HƠN NHA MẤY BẠN
BÀI CỦA BẠN KIA ĐÚNG RỒI NHA !!!!!!!
CHỈ LÀ MÌNH GIẢI CHI TIẾT CHO CÁC BẠN HIỂU HƠN THÔI !!!!!
THANKS NHIỀU
a, \(S=2.1+2.3+2.3^2+...+2.3^{2004}\)
\(=2.\left(1+3+3^2+...+3^{2004}\right)\)
Đặt \(A=1+3+3^2+...+3^{2004}\)
\(\Rightarrow\) \(3A=3+3^2+3^3+...+3^{2005}\)
\(\Rightarrow\) \(2A=3^{2005}-1\)
\(\Rightarrow\) \(A=\frac{3^{2005}-1}{2}\)
\(\Rightarrow\) \(S=2.\frac{3^{2005}-1}{2}=3^{2005}-1\)
b, Ta có : \(3^{2005}=3^{4.501+1}=\left(3^4\right)^{501}.3\)
Mà \(\left(3^4\right)^{501}\) có chữ số tận cùng là 1
\(\Rightarrow\) \(\left(3^4\right)^{501}.3\) có chữ số tận cùng là 3
\(\Rightarrow\) \(3^{2005}\) có chữ số tận cùng là 3
\(\Rightarrow\) S có chữ số tận cùng là 2
\(\Rightarrow\) S không phải là số chính phương
Study well ! >_<
Có:S=1+31+32+33+...+330
3S=3+32+33+...+331
3S−S=331−1
2S=34.7+3−1
2S=817.27−1
=>chữ số tận cùng của S là 3
=> S không phải là số chính phương
Ta có :
1 + 31 + 32 + 33 + 34 ... + 330
= 1 + 31 + 2 + 3 + 4 .. + 30
= 1 + 3465
Tận cùng của 3465
cứ 5 chữ số 3 nhân với nhau thì có tận cùng là 3 . Vì 465 chia hết cho 5 nên tận cùng của 3465 là 3
3 + 1 = 4 nên tận cùng của 1 + 3465 = 4
Các đặc điểm của số chính phương :
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.
S thỏa mãn các điều kiện trên nên S là số chính phương