Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S=1+2+22+...+22005
a, So sánh S với 5.22014
b, S có chia hết cho 3 ko?
Bạn nào giải giúp mềnh với ạ
S = 1 + 2 + 22 + 23 + ..... + 29
2S = 2 + 22 + 23 + .... + 29 + 210
2S - S = ( 2 + 22 + 23 + .... + 29 + 210 ) - ( 1 + 2 + 22 + 23 + ..... + 29 )
S = 210 - 1
Ta có :
5 . 28 = ( 4 + 1 ) . 28 = ( 22 + 1 ) . 28 = 22 . 28 + 1 . 28 = 210 + 28
=> 210 - 1 < 210 + 28
=> S < 210 + 28
ta có s=1+2+2^2+2^3+2^4+...+2^9
=>2s=2+2^2+2^3+2^4+...+2^10
=>s=(2^10-1)/2=2^9-1/2
đến đoạn này chắc bn so sánh đc rồi
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2014}}\)
\(\Rightarrow A
A < 1
xin lỗi mình không biết cách viết phân số!!!!
nha!!!!
\(B=2\cdot4\cdot6\cdot8\cdot20=\left(6\cdot20\right)\cdot2\cdot4\cdot8=120\cdot2\cdot4\cdot8\)
mà 120 chia hết cho 30 (120 : 30 = 4)
=> B chia hết cho 30
Vậy B có chia hết cho 30
Đáp án của bạn Oxytocin là đúng rồi nhé ! Những bạn trình bày hơi tắt đèn một chút ạ !
1/ Do trong 6 số nguyên liên tiếp bất kì luôn có 3 số chẵn gồm 2 số chia hết cho 2 và ít nhất 1 số chia hết cho 4 nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 (1)
Do trong 6 số nguyên liên tiếp luôn có 2 số chia hết cho 3 => tích 6 số nguyên liên tiếp luôn chia hết cho 9 (2)
Do trong 6 số nguyên liên tiếp luôn có ít nhất 1 số chia hết cho 5 => tích 6 số nguyên liên tiếp luôn chia hết cho 5 (3)
Từ (1); (2); (3) do 16; 9; 5 nguyên tố cùng nhau từng đôi một nên tích 6 số nguyên liên tiếp luôn chia hết cho 16 x 9 x 5 hay 720 (đpcm)
2/ Do trong 3 số chẵn liên tiếp luôn có 2 số chia hết cho 1 và ít nhất 1 số chia hết cho 4 => tích của chúng chia hết cho 16
Do trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3 nên tích của chúng chia hết cho 3
=> tích 3 số chẵn liên tiếp chia hết cho 2; 4; 6; 8; 12; 16; 24; 48
câu 1a: x = 0 hoặc 5
b: x = 5
câu 2 để 2y71x chia hết cho 45 thì 2y71x chia hết cho 5 và 9.
Nếu x bằng 5 thì y bằng 3
Nếu x bằng 0 thì y bằng 8
câu a là thế này : 2 số tự nhiên liên tiếp thì sẽ là 1 số chẵn và 1 số lẽ mà số chẵn chắc chắn chia ht cho 2
và
1 số lẽ nhân với 1 số chẵn sẽ là 1 số chẵn
=> 2 số tự nhiên liên tiếp chia ht cho 2
a: \(2S=2+2^2+2^3+...+2^{2006}\)
\(\Leftrightarrow S=2^{2006}-1< 5\cdot2^{2014}\)
b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^{2004}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{2004}\right)⋮3\)