Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(P\left(x\right)=x^2-3x\)
Cho \(P\left(x\right)=0\)
\(\Rightarrow x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)là nghiệm của đa thức P(x)
b) Có \(Q\left(x\right)=P\left(x\right)+2mx-2\)nhận x = 1 là nghiệm
\(\Rightarrow P\left(x\right)+2mx-2=0\)
\(\Rightarrow x^2-3x+2mx-2=0\)
\(\Rightarrow1^2-3.1+2m.1=2\)
\(\Rightarrow1-3+2m=2\)
\(\Rightarrow2m=2-1+3\)
\(\Rightarrow2m=4\)
\(\Rightarrow m=2\)
bạn chỉ cần thế nghiệm vào rồi tính m là đc rồi
Lời giải:
a) Ta có:
\(p(x)=x^2-3x=0\)
\(\Leftrightarrow x(x-3)=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\) là nghiệm của $p(x)$
b)
\(Q(x)=p(x)+2mx-2\)
\(\Leftrightarrow Q(x)=x^2-3x+2mx-2\)
Vì $Q(x)$ nhận \(x=1\) là nghiệm nên:
\(1^2-3.1+2m.1-2=0\)
\(\Leftrightarrow -4+2m=0\Leftrightarrow m=2\)
a/\(P\left(x\right)=x^2-3x\)
Cho \(P\left(x\right)=0\Rightarrow x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy........
b/\(Q\left(x\right)=P\left(x\right)+2mx-2\)
\(\Rightarrow Q\left(x\right)=x^2-3x+2mx-2\)
Có x=1 là nghiệm của Q(x)
=> Q(1)=0
=>\(1^2-3.1+2m.1-2=0\)
=>-4+2m=0
=>2m=4=>m=2
Vậy..............
Ta có:
\(g\left(x\right)=mx^2+2mx-3=0\)
Vì \(x=2\) là nghiệm của \(g\left(x\right)\) (gt).
+ Thay \(x=2\) vào \(g\left(x\right)\) ta được:
\(g\left(x\right)=m.2^2+2m.2-3=0\)
\(\Rightarrow m.4+4m-3=0\)
\(\Rightarrow4m+4m-3=0\)
\(\Rightarrow8m-3=0\)
\(\Rightarrow8m=0+3\)
\(\Rightarrow8m=3\)
\(\Rightarrow m=3:8\)
\(\Rightarrow m=\frac{3}{8}.\)
Vậy \(m=\frac{3}{8}.\)