K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Câu a:

Đặt \(x^2=t\left(t>0\right)\)phương trinh \(x^4+\left(1-m\right)x^2+2m-2=0\left(1\right)\)trở thành \(t^2+\left(1-m\right)t+2m+2=0\left(2\right)\)

         Để (1) có 4 nghiệm phân biệt thì phương trình (2) phải có 2 nghiệm phân biệt tức

         \(\Delta>0\Leftrightarrow\left(1-m\right)^2-4\left(2m-2\right)>0\)

         \(m^2-10m+9>0\Leftrightarrow\left(m-1\right)\left(m-9\right)>0\Leftrightarrow\orbr{\begin{cases}m>9\\m< 1\end{cases}}\)

Câu b:

phương trình (2) có hai nghiệm phân biệt \(t_1,t_2\)tương ứng phương trình (1) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\)thỏa mãn \(\hept{\begin{cases}t_1=-x_1=x_3\\t_2=-x_2=x_4\end{cases}}\)(theo tính chất đối xứng nghiệm của hàm trùng phương bậc 4)

theo viet ta có :\(\hept{\begin{cases}t_1+t_2=1-m\\t_1t_2=2m-2\end{cases}}\)

Xét \(\frac{x_1x_2x_3}{2x_4}+\frac{x_1x_2x_4}{2x_3}+\frac{x_1x_3x_4}{2x_2}+\frac{x_2x_3x_4}{2x_1}=2013\)

\(VT=\frac{\left(x_1x_2x_3\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_1x_2x_4\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_1x_3x_4\right)^2}{2x_1x_2x_3x_4}+\frac{\left(x_4x_2x_3\right)^2}{2x_1x_2x_3x_4}\)

\(=\frac{\left(x_1x_2\right)^2\left(x^2_3+x^2_4\right)}{2x_1x_2x_3x_4}+\frac{\left(x_4x_3\right)^2\left(x_1^2+x_2^2\right)}{2x_1x_2x_3x_4}\)

thay biến x bằng biến t ta có

\(VT=\frac{\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}+\frac{\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}=\frac{2\left(t_1t_2\right)^2\left(t_1^2+t^2_2\right)}{2t_1t_2}\)

\(=\left(t_1t_2\right)\left(t_1^2+t^2_2\right)=\left(t_1^2+t^2_2-2t_1t_2\right)t_1t_2\)

thế m theo viet vào ta có :

\(\left(2m-2\right)\left(\left(1-m\right)^2-2\left(2m-2\right)\right)=2013\)

\(\Leftrightarrow2m^3-8m^2+17m-2023=0\)

Đến đây giải dễ rùi bạn gải nốt tìm m nhé

NV
19 tháng 2 2022

Đặt \(x^2=t\) \(\Rightarrow t^2+\left(1-m\right)t+2m-2=0\) (1)

Pt đã cho có 4 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(1-m\right)^2-8\left(m-1\right)>0\\t_1+t_2=m-1>0\\t_1t_2=2m-2>0\end{matrix}\right.\) \(\Rightarrow m>9\)

Khi đó, do vai trò của \(x_1;x_2;x_3;x_4\) như nhau, ko mất tính tổng quát, giả sử \(x_1=-\sqrt{t_1};x_2=\sqrt{t_1}\) ; \(x_3=-\sqrt{t_2};x_4=\sqrt{t_2}\)

\(\Rightarrow x_1x_2x_3x_4=t_1t_2\) ; \(x_1^2=x_2^2=t_1\) ; \(x_3^2=x_4^2=t_2\)

\(\Rightarrow\dfrac{x_1x_2x_3x_4}{2x_4^2}+\dfrac{x_1x_2x_3x_4}{2x_3^2}+\dfrac{x_1x_2x_3x_4}{2x_2^2}+\dfrac{x_1x_2x_3x_4}{2x_1^2}=2017\)

\(\Leftrightarrow\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_2}+\dfrac{t_1t_2}{2t_1}+\dfrac{t_1t_2}{2t_1}=2017\)

\(\Leftrightarrow t_1+t_2=2017\)

\(\Leftrightarrow m-1=2017\Rightarrow m=2018\)

NV
11 tháng 7 2020

Hướng dẫn: nhân cả tử và mẫu của phân số đầu với x4, làm tương tự với 3 phân số còn lại, đặt nhân tử chung, phần còn lại trong ngoặc ghép cặp x1 và x2; x3 và x4, sau đó quy đồng từng cặp và Viet

11 tháng 7 2020

dạ em hiểu rồi, cảm ơn ah

Ta có : \(x^2+\left(m^2+1\right)x+m=2\)

\(\Leftrightarrow x^2+\left(m^2+1\right)x+m-2=0\left(a=1;b=m^2+1;c=m-2\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(\left(m^2+1\right)^2-4\left(-2\right)=m^4+1+8=m^4+9>0\) (hoàn toàn đúng, ez =)) 

b, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=-m^2-1;x_1x_2=m-2\)

Đặt \(x_1;x_2\)lần lượt là \(a;b\)( cho viết dễ hơn )

Theo bài ra ta có \(\frac{2a-1}{b}+\frac{2b-1}{a}=ab+\frac{55}{ab}\)

\(\Leftrightarrow\frac{2a^2-a}{ab}+\frac{2b^2-b}{ab}=\frac{\left(ab\right)^2}{ab}+\frac{55}{ab}\)

Khử mẫu \(2a^2-a+2b^2-b=\left(ab\right)^2+55\)

Tự lm nốt vì I chưa thuộc hđt mà lm )): 

7 tháng 7 2020

a,\(x^2+\left(m^2+1\right)x+m=2\)

\(< =>x^2+\left(m^2+1\right)x+m-2=0\)

Xét \(\Delta=\left(m^2+1\right)^2-4.\left(m-2\right)=1+m^4-4m+8\)(đề sai à bạn)

b,Để phương trình có 2 nghiệm phân biệt : \(\Delta>0\)

\(< =>\left(m^2+1\right)^2-4\left(m-2\right)>0\)

\(< =>4m-8< m^4+1\)

\(< =>4m-9< m^4\)

\(< =>m>\sqrt[4]{4m-9}\)

Ta có : \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}\)

\(< =>\frac{2x_1^2-x_1+2x_2^2-x_2}{x_1x_2}=\frac{\left(x_1x_2\right)^2+55}{x_1x_2}\)

\(< =>2\left[\left(x_1+x_2\right)\left(x_1-x_2\right)\right]-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+55\)

đến đây dễ rồi ha 

\(x^2-2\left(m-1\right)x-2m=0\)

\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)

\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

 

19 tháng 3 2018

a)Đặt \(t=x^2\) ta có: \(Pt\Leftrightarrow t^2+\left(1-m\right)t+2m-2=0\)

\(\Delta=\left(1-m\right)^2-4\left(2m-2\right)=1-2m+m^2-8m+8\\ =\left(m-1\right)\left(m-9\right)\)

Để phương trình có 4 nghiệm phân biệt thì \(\Delta>0\) tức là \(\left(m-1\right)\left(m-9\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 1\\m>9\end{matrix}\right.\)

\(t_1,t_2>0\)

Giả sử \(t_1>t_2>0\)

\(\Rightarrow m-1>\sqrt{\left(m-1\right)\left(m-9\right)}\Leftrightarrow m^2-2m+1>m^2-10m+9\\ \Leftrightarrow8m-8>0\Leftrightarrow m>1\)Vậy để phương trình có 4 nghiệm phân biệt thì \(m>9\)

19 tháng 3 2018

b)Giả sử \(\left\{{}\begin{matrix}x_1=\sqrt{t_1}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_2}\\x_4=-\sqrt{t_2}\end{matrix}\right.\)

Ta có: \(\dfrac{x_1x_2x_3}{2x_4}=\dfrac{\sqrt{t_1}\left(-\sqrt{t_1}\right)\sqrt{t_2}}{-2\sqrt{t_2}}=\dfrac{t_1}{2}\)

Tương tự ta có: \(\dfrac{x_1x_2x_4}{2x_3}=\dfrac{t_1}{2};\dfrac{x_1x_3x_4}{2x_2}=\dfrac{t_2}{2};\dfrac{x_2x_3x_4}{2x_1}=\dfrac{t_2}{2}\)

\(\Rightarrow t_1+t_2=2013\Leftrightarrow m-1=2013\Leftrightarrow m=2014\left(TM\right)\)

10 tháng 5 2022

`1)`

$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb

$b\big)$

Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)

\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)

\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)

x1+x2=2m-2

2x1-x2=2

=>3x1=2m và 2x1-x2=2

=>x1=2m/3 và x2=4m/3-2

x1*x2=-2m+1

=>8/9m^2-4/3m+2m-1=0

=>8/9m^2+2/3m-1=0

=>8m^2+6m-9=0

=>m=3/4 hoặc m=-3/2

31 tháng 3 2023

\(x^2-2\left(m-1\right)x-2m+1=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left[2\left(m-1\right)\right]^2-4\left(-2m+1\right)>0\)

\(\Leftrightarrow4\left(m-1\right)^2+8m-4>0\)

\(\Leftrightarrow4m^2-8m+4+8m-4>0\)

\(\Leftrightarrow4m^2>0\Leftrightarrow m\ne0\)

Vậy với \(\forall m\ne0\) thì phương trình (1) có 2 nghiệm phân biệt.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m+1\end{matrix}\right.\)

Ta có \(2x_1-x_2=2\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)-2=3x_2\left(1'\right)\\\left(x_1+x_2\right)+2=3x_1\left(2'\right)\end{matrix}\right.\)

Lấy (1') nhân cho (2') ta được:

\(\left[2\left(x_1+x_2\right)-2\right]\left[\left(x_1+x_2\right)+2\right]=9x_1x_2\)

\(\Rightarrow\left[2.2\left(m-1\right)-2\right]\left[2\left(m-1\right)+2\right]=9\left(-2m+1\right)\)

\(\Leftrightarrow\left(4m-6\right).2m=-18m+9\)

\(\Leftrightarrow8m^2+6m-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{-3}{2}\end{matrix}\right.\)

Thử lại ta có m=3/4 hay m=-3/2