Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-4x^2+mx-m+3=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-3x+m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-3x+m-3=0\left(2\right)\end{matrix}\right.\)
Để phương trình có 1 nghiệm duy nhất thì \(x^2-3x+m-3=0\) vô nghiệm hoặc có 1 nghiệm kép bằng 1.
TH1: Phương trình (2) vô nghiệm
\(\Delta=b^2-4ac=9-4\left(m-3\right)=-4m+12< 0\\ \Rightarrow m>3\)
TH2: Phương trình (2) có 1 nghiệm kép bằng 1, khi đó:
\(\left\{{}\begin{matrix}\Delta=-4m+12=0\\1^2-3\cdot1+m-3=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\left(loại\right)}\)
Vậy để phương trình có nghiệm duy nhất thì m > 3.
\left\{{}\begin{matrix}\Delta=-4m+12=0\\1^2-3\cdot1+m-3=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\left(loại\right)}
dòng này sao v bn
∆' = (-2)² - [-(m² + 3m)]
= 4 + m² + 3m
= m² + 3m + 9/4 + 7/4
= (m + 3/2)² + 7/4 > 0 với mọi m ∈ R
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m ∈ R
Δ=(-4)^2-4(-m^2-3m)
=16+4m^2+12m
=4m^2+12m+16
Để phương trình có 2 nghiệm phân biệt thì
4m^2+12m+16>0
=>m^2+3m+4>0
=>m^2+3m+9/4+7/4>0
=>(m+3/2)^2+7/4>0(luôn đúng)