Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a*c=-m^2-3<=-3<0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
b: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)
=>\(\dfrac{x_2+x_1}{x_2x_1}=3\)
=>\(\dfrac{-2}{-m^2-3}=3\)
=>\(\dfrac{2}{m^2+3}=3\)
=>m^2+3=2/3
=>m^2=2/3-3=-7/3(vô lý)
Δ=(-m)^2-4(2m-3)
=m^2-8m+12
=(m-2)(m-6)
Để phương trình co 2 nghiệm pb thì (m-2)(m-6)>0
=>m>6 hoặc m<2
x1^2*x2+x1*x2^2=5
=>x1x2(x1+x2)=5
=>(2m-3)*m=5
=>2m^2-3m-5=0
=>2m^2-5m+2m-5=0
=>(2m-5)(m+1)=0
=>m=5/2(loại) hoặc m=-1(nhận)
x^2-3x-(m-1)=0(1)
a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0
9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.
>>>>Để(1) có 2 nghiệm phân biệt thì m>1.
b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6
>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1
-(m-1)=1>>>m=0.
Vậy m=0
\(x^2-2x-m=0\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{- \left(-2\right)}{1}=2\\x_1x_2=\dfrac{c}{a}=-m\end{matrix}\right.\)
Ta có :
\(\left(x_1x_2+1\right)^2=2\left(x_1+x_2\right)\) ( Cái chỗ x^1 , x^2 bn ghi nhầm thành mũ à)
\(\Leftrightarrow\left(-m+1\right)^2-2.2=0\)
\(\Leftrightarrow m^2-2m+1-4=0\)
\(\Leftrightarrow m^2-2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Vậy \(m=3;m=-1\) thì thỏa mãn
1) Thay m=1 vào phương trình, ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1
1) Bạn tự làm
2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)
Vậy ...
Δ=(-2)^2-4(m-3)
=4-4m+12=16-4m
Để phương trình có hai nghiệm dương phân biệt thì 16-4m>0 và m-3>0
=>m>3 và m<4
x1^2+x2^2=(x1+x2)^2-2x1x2
=2^2-2(m-3)=4-2m+6=10-2m
=>x1^2=10-2m-x2^2
x1^2+12=2x2-x1x2
=>10-2m-x2^2+12=2x2-m+3
=>\(-x_2^2+22-2m-2x_2+m-3=0\)
=>\(-x_2^2-2x_2-m+19=0\)
=>\(x_2^2+2x_2+m-19=0\)(1)
Để (1) có nghiệmthì 2^2-4(m-19)>0
=>4-4m+76>0
=>80-4m>0
=>m<20
=>3<m<4