Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán Viet của lớp 10 chứ ko phải lớp 9, lớp 9 chưa học giải BPT bậc 2 để giải các điều kiện cho bài toán này:
\(\Delta'=\left(m+1\right)^2-2\left(m+2\right)\left(m-4\right)=-m^2+6m+17\)
- Pt có 2 nghiệm pb trái dấu khi:
\(ac=2\left(m+2\right)\left(m-4\right)< 0\Rightarrow-2< m< 4\)
- Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=-m^2+6m+17\ge0\\ac=2\left(m+2\right)\left(m-4\right)>0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3-\sqrt{26}\le m\le3+\sqrt{26}\\\left[{}\begin{matrix}m>4\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3-\sqrt{26}\le m< -2\\4< m\le3+\sqrt{26}\end{matrix}\right.\) (1)
- Pt có 2 nghiệm cùng âm khi pt có 2 nghiệm cùng dấu đồng thời:
\(x_1+x_2=\dfrac{m+1}{m+2}< 0\Rightarrow-2< m< -1\) (2)
Kết hơp (1);(2) \(\Rightarrow m\in\varnothing\)
(x1-1)(x2^2-5x2+m-4)=0
=>x1=1 và x2^2-x2(x1+x2-1)+x1x2+1=0
=>x1=1 và x2^2-x2x1-x2^2+x2+x1x2+1=0
=>x1=1 và x2=-1
x1*x2=m-3
=>m-3=-1
=>m=2
ĐK:`x_1,x_2 ne 0=>x_1.x_2 ne 0`
`=>-2m-1 ne 0=>m ne -1/2`
Ta có:`a=1,b=2m,c=-2m-1`
`=>a+b+c=1+2m-2m-1=0`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-2m-1\end{array} \right.\)
PT có 2 nghiệm pn
`=>-2m-1 ne 1`
`=>-2m ne 2`
`=>m ne -1`
Nếu `x_1=1,x_2=-2m-1`
`pt<=>6=1+1/(-2m-1)`
`<=>5=1/(-2m-1)`
`<=>2m+1=-1/5`
`<=>2m=-6/5`
`<=>m=-3/5(tm)`
Nếu `x_2=1,x_1=-2m-1`
`pt<=>6/(-2m-1)=-2m-1+1=-2m`
`<=>6/(2m+1)=2m`
`<=>3/(2m+1)=m`
`<=>2m^2+m-3=0`
`a+b+c=0`
`=>m_1=1(tm),m_2=-c/a=-3/2(tm)`
Vậy `m in {-3/5,1,-3/2}` thì ....
Δ=(2m+5)^2-4(-2m-6)
=4m^2+20m+25+8m+24
=4m^2+28m+49
=(2m+7)^2>=0
Để phương trình có hai nghiệm phân biệt thì 2m+7<>0
=>m<>-7/2
|x1|+|x2|=7
=>x1^2+x2^2+2|x1x2|=49
=>(x1+x2)^2-2x1x2+2|x1x2|=49
=>(2m+5)^2-2(-2m-6)+2|2m+6|=49
=>4m^2+20m+25+4m+12+2|2m+6|=49
=>4m^2+24m-12+4|m+3|=0
TH1: m>=-3
=>4m^2+24m-12+4m+12=0
=>4m^2+28m=0
=>m=0(nhận) hoặc m=-7(loại)
TH2: m<-3
=>4m^2+24m-12-4m-12=0
=>4m^2+20m-24=0
=>m^2+5m-6=0
=>m=-6(nhận) hoặc m=-1(loại)
Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)
\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)
Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)
Do đó:
a.
Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm
TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)
TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)
Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)
b.
Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)
\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)
c.
Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)
d.
Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)
À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)