Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Với m= 2 PT trở thành x 2 − 4 x + 3 = 0
Giải phương trình tìm được các nghiệm x = 1 ; x = 3.
2) Ta có Δ ' = m 2 − m 2 + 1 = 1 > 0 , ∀ m .
Do đó, phương trình (1) luôn có hai nghiệm phân biệt.
Từ giả thiết ta có x i 2 − 2 m x i + m 2 − 1 = 0 , i = 1 ; 2. x i 3 − 2 m x i 2 + m 2 x i − 2 = x i x i 2 − 2 m x i + m 2 − 1 + x i − 2 = x i − 2 , i = 1 ; 2.
Áp dụng định lí Viét cho phương trình (1) ta có x 1 + x 2 = 2 m ; x 1 . x 2 = m 2 − 1
Ta có
x 1 − 2 + x 2 − 2 = 2 m − 4 ; x 1 − 2 x 2 − 2 = x 1 x 2 − 2 x 1 + x 2 + 4 = m 2 − 1 − 4 m + 4 = m 2 − 4 m + 3
Vậy phương trình bậc hai nhận x 1 3 − 2 m x 1 2 + m 2 x 1 − 2 , x 2 3 − 2 m x 2 2 + m 2 x 2 − 2 là nghiệm là x 2 − 2 m − 4 x + m 2 − 4 m + 3 = 0.
Lời giải:
Dễ thấy 2 PT trên đều có 2 nghiệm phân biệt.
Đối với PT $(1)$, nếu $x_1,x_2$ là 2 nghiệm của nó, áp dụng định lý Viet ta có:
\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-m^2\end{matrix}\right.\)
\(\Rightarrow \frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=-\frac{3}{m^2}\); \(\frac{1}{x_1}.\frac{1}{x_2}=\frac{-1}{m^2}\)
Theo định lý Viet đảo, $\frac{1}{x_1}, \frac{1}{x_2}$ là nghiệm của PT:
\(x^2+\frac{3}{m^2}x-\frac{1}{m^2}=0\Leftrightarrow m^2x^2+3x-1=0\)
Do đó ta có đpcm.
\(\Delta'=m^2-\left(m^2-1\right)=1>0\) nên pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2mx_1+m^2-1=0\)
\(\Leftrightarrow x_1^2-2mx_1+m^2=1\)
\(\Rightarrow x_1^3-2mx_1^2+m^2x_1=x_1\)
\(\Rightarrow x_1^3-2mx_1^2+m^2x_1-2=x_1-2\)
Hoàn toàn tương tự, ta có: \(x_2^3-2mx_2^2+m^2x_2-2=x_2-2\)
Giả sử pt \(y^2+by+c=0\) nhận \(x_1-2\) và \(x_2-2\) là nghiệm
\(\Rightarrow\left\{{}\begin{matrix}x_1-2+x_2-2=-b\\\left(x_1-2\right)\left(x_2-2\right)=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2-4=-b\\x_1x_2-2\left(x_1+x_2\right)+4=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=-b\\m^2-1-4m+4=c\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-\left(2m-4\right)\\c=m^2-4m+3\end{matrix}\right.\)
Vậy pt đó có dạng: \(x^2-\left(2m-4\right)x+m^2-4m+3=0\)
1) \(\Delta'=1-m>0\forall m< 1\)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt
2) Do a = 1; c = -1 nên a và c trái dấu
Do đó phương trình luôn có hai nghiệm phân biệt
Theo Viét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2+x_1}{x_1x_2}=\dfrac{-2}{-1}=2\)
a) Xét pt đã cho có \(a=m^2+m+1\); \(b=-\left(m^2+2m+2\right)\); \(c=-1\)
Nhận thấy rằng \(ac=\left(m^2+m+1\right)\left(-1\right)=-\left(m^2+m+1\right)\)
\(=-\left(m^2+2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)
Vì \(-\left(m+\dfrac{1}{2}\right)^2\le0\) và \(-\dfrac{3}{4}< 0\) nên \(-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\) hay \(ac< 0\). Vậy pt đã cho luôn có 2 nghiệm trái dấu.
b) Theo câu a, ta đã chứng minh được pt đã cho luôn có 2 nghiệm trái dấu \(x_1,x_2\).
Áp dụng hệ thức Vi-ét, ta có \(S=x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m^2+2m+2\right)}{m^2+m+1}=\dfrac{m^2+2m+2}{m^2+m+1}\)
Nhận thấy \(m^2+m+1\ne0\) nên ta có:
\(\left(m^2+m+1\right)S=m^2+2m+2\) \(\Leftrightarrow Sm^2+Sm+S-m^2-2m-2=0\)\(\Leftrightarrow\left(S-1\right)m^2+\left(S-2\right)m+\left(S-2\right)=0\)(*)
pt (*) có \(\Delta=\left(S-2\right)^2-4\left(S-1\right)\left(S-2\right)\)\(=S^2-4S+4-4\left(S^2-3S+2\right)\)\(=S^2-4S+4-4S^2+12S-8\)\(=-3S^2+8S-4\)
Để pt (*) có nghiệm thì \(\Delta\ge0\) hay \(-3S^2+8S-4\ge0\)\(\Leftrightarrow-3S^2+6S+2S-4\ge0\)\(\Leftrightarrow-3S\left(S-2\right)+2\left(S-2\right)\ge0\) \(\Leftrightarrow\left(S-2\right)\left(2-3S\right)\ge0\)
Ta xét 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}S-2\ge0\\2-3S\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\ge2\\S\le\dfrac{2}{3}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}S-2\le0\\2-3S\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\le2\\S\ge\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\dfrac{2}{3}\le S\le2\) (nhận)
Khi \(S=\dfrac{2}{3}\) thì (*) \(\Leftrightarrow\left(\dfrac{2}{3}-1\right)m^2+\left(\dfrac{2}{3}-2\right)m+\dfrac{2}{3}-2=0\)\(\Leftrightarrow-\dfrac{1}{3}m^2-\dfrac{4}{3}m-\dfrac{4}{3}=0\)\(\Leftrightarrow m^2+4m+4=0\)
\(\Leftrightarrow\left(m+2\right)^2=0\) \(\Leftrightarrow m+2=0\) \(\Leftrightarrow m=-2\)
Khi \(S=2\) thì (*) \(\Leftrightarrow\left(2-1\right)m^2+\left(2-2\right)m+2-2=0\)\(\Leftrightarrow m^2=0\)
\(\Leftrightarrow m=0\)
Vậy GTNN của S là \(\dfrac{2}{3}\) khi \(m=-2\) và GTLN của S là \(2\) khi \(m=0\)
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .