Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=m^2+12>0\) ; \(\forall m\)
\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)
Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)
Để pt cho có 2 nghiệm thì \(\Delta=m^2-4n\ge0\Leftrightarrow m^2\ge4n\) (*)
Theo Vi - et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n\end{matrix}\right.\)
Ta khai thác dữ kiện : \(x_1^3-x_2^3=7\)
\(\Rightarrow\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=7\)
\(\Rightarrow x_1^2+x_1x_2+x_2^2=7\) (1)
\(\Rightarrow\left(x_1-x_2\right)^2+3x_1x_2=7\)
\(\Rightarrow3n=7-1=6\Rightarrow n=2\)
Ta lại có từ (1) suy ra :
\(\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=7\)
\(\Rightarrow m^2=7+x_1x_2=7+n=7+2=9\)
\(\Rightarrow m=\pm3\)
Thử lại ta thấy các giá trị đều thỏa mãn (*)
Vậy \(\left(m,n\right)=\left(-3,2\right);\left(3,2\right)\)
\(\Delta=a^2-4\left(b+2\right)>0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=b+2\end{matrix}\right.\) (1)
\(\left\{{}\begin{matrix}x_1-x_2=4\\\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\64+12x_1x_2=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\x_1x_2=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_1=1\\x_2=-3\end{matrix}\right.\)
Thế vào (1) để tìm a; b
\(\Delta=\left(n-2\right)^2+12>0\) ; \(\forall n\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi n
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=n-2\\x_1x_2=-3\end{matrix}\right.\)
\(\sqrt{x_1^2+2018}-x_2=\sqrt{x_2^2+2018}+x_1\)
\(\Rightarrow x_1^2+x_2^2-2x_2\sqrt{x_1^2+2018}=x_1^2+x_2^2+2018+2x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow-x_2\sqrt{x_1^2+2018}=x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow x_2^2\left(x_1^2+2018\right)=x_1^2\left(x_2^2+2018\right)\)
\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\) (do \(x_1;x_2\) trái dấu)
\(\Rightarrow x_1+x_2=0\Rightarrow n-2=0\Rightarrow n=2\)
Thử lại với \(n=2\) thấy đúng. Vậy...
a: Thay m=-5 vào (1), ta được:
\(x^2+2\left(-5+1\right)x-5-4=0\)
\(\Leftrightarrow x^2-8x-9=0\)
=>(x-9)(x+1)=0
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m-4\right)=4m^2+8m+4-4m+16=4m^2+4m+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)
\(\Leftrightarrow x_1^2+x_2^2=-3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left(2m+2\right)^2+m-4=0\)
\(\Leftrightarrow4m^2+9m=0\)
=>m(4m+9)=0
=>m=0 hoặc m=-9/4
a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:
\(3^2-m.3+2m-4=0\)
\(\Leftrightarrow9-3m+2m-4=0\)
\(\Leftrightarrow m-5=0\)
\(\Leftrightarrow m=5\)
Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:
\(\Delta=\left(-5\right)^2-4.1.6=1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)
Vậy nghiệm còn lại là \(x=2\)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
a:Sửa đề: x^2-(m+1)x+2m-8=0
Khi m=2 thì (1) sẽ là x^2-3x-4=0
=>(x-4)(x+1)=0
=>x=4 hoặc x=-1
b: Δ=(-m-1)^2-4(2m-8)
=m^2+2m+1-8m+32
=m^2-6m+33
=(m-3)^2+24>=24>0
=>(1) luôn có hai nghiệm pb
\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)
=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11
=>(m+1)^2-(2m-8)-2(m+1)+4=11
=>m^2+2m+1-2m+8-2m-2+4=11
=>m^2-2m=0
=>m=0 hoặc m=2