Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện : \(x\ge-\frac{3}{4}\)
Xét : \(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=\sqrt{\left(x+\frac{3}{4}\right)+2.\sqrt{x+\frac{3}{4}}.\frac{1}{2}+\frac{1}{4}}=\sqrt{\left(\sqrt{x+\frac{3}{4}}+\frac{1}{2}\right)^2}=\sqrt{x+\frac{3}{4}}+\frac{1}{2}\)
\(\Rightarrow x+\sqrt{x+\frac{3}{4}}+\frac{1}{2}=a\Leftrightarrow\left(x+\frac{3}{4}\right)+\sqrt{x+\frac{3}{4}}-\left(\frac{1}{4}+a\right)=0\)
Đặt \(y=\sqrt{x+\frac{3}{4}},y\ge0\). pt trên trở thành \(y^2+y-\left(a+\frac{1}{4}\right)=0\)
Để pt có nghiệm theo y thì \(\Delta=1^2+4.\left(a+\frac{1}{4}\right)=2\left(2a+1\right)\ge0\Leftrightarrow a\ge-\frac{1}{2}\)
Khi đó : \(x_1=\frac{-1-\sqrt{2\left(2a+1\right)}}{2}\), \(x_2=\frac{-1+\sqrt{2\left(2a+1\right)}}{2}\)
\(M=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right)\cdot\frac{x+2\sqrt{x}+1}{2x-2\sqrt{x}}\)
\(=\frac{\left(x-\sqrt{x}+2\right)-\sqrt{x}-1}{x-1}\cdot\frac{\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{x-1}\cdot\frac{\sqrt{x}+1}{2\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{2\sqrt{x}}\)
b) PT có nghiệm <=> x>0
<=>\(\sqrt{x}>0\)
<=> \(\sqrt{x}-1>-1\)
<=> x>-1
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)