Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Đáp án D
Để bất phương trình m ≤ f x = x 2 + 3 x + 3 x + 1 ; ∀ x ∈ 0 ; 1 ⇔ m ≤ min 0 ; 1 f x
Xét hàm số f x = x 2 + 3 x + 3 x + 1 trên 0 ; 1 ⇒ min 0 ; 1 f x = 3 . Vậy m ≤ 3
Đặt
Suy ra
Ta có
Ta có bảng biến thiên
Từ bảng biến thiên ta suy ra
Khi đó bất phương trình trở thành:
Xét hàm số với
Ta có
Suy ra hàm số f(t) nghịch biến trên
Chọn C.
Khi đó bất phương trình trở thành
Suy ra hàm số f(x) đồng biến trên
Do đó yêu cầu bài toán
Chọn B.
Đáp án D
B P T ⇔ 2 3 x + m − 1 3 x + m − 1 > 0 ⇔ 2 3 x − 3 x − 1 + m 3 x + 1 > 0 ⇔ m > 3 x − 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ * .
Xét hàm số f x = 3 x − 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ ,
ta có f ' x = 8 x ( ln 3 − ln 8 .3 x − ln 8 3 x + 1 2 < 0 ; ∀ x ∈ ℝ .
Suy ra f x là hàm số nghịch biến trên ℝ mà lim x → − ∞ f x = 1 , do đó min x ∈ ℝ f x = lim x → − ∞ f x = 1
Vậy * ⇔ m ≥ min x ∈ ℝ f x = 1 ⇒ m ≥ 1 là giá trị cần tìm.
Bất phương trình đã cho
Đặt Bất phương trình trở thành
Chọn D.