\(\left(m-1\right)^2-2mx+m+1\)Tìm tất cả các số nguyên m để phư...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

 m=3m=3 hoặc m=1m=1.

 

9 tháng 2 2021

\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)

xét phương trình 2 ta được ; (m-2)(m+3)x=m+3

với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m

xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z

                                          =>x-1=2k

                                           =>x=2k+1

do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z

                         =>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn

 

14 tháng 10 2019

ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)

\(\Delta=4m^2-8m+9\)

\(\Delta=\left(2m-2\right)^2+5>0\)

do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2

áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)

theo bài ra:   x13  +  x23 = 27 

<=> (x1 + x2 )3 - 3x1x2  (x1+x2)  - 27=0   <=>  (2m-1)3 - 3(m-2) ( 2m-1) -27 =0

<=>  8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0

<=> 8m3 - 18m2 + 21m - 34 =0 <=>  (m-2)(8m2 -2m+17) = 0 

\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2

Vậy m=2 thỏa mãn đề bài

( chú giải: PTVN là phương trình vô nghiệm)

23 tháng 2 2016

(x-1)(x2-2mx+m2-2m+2)=0

=>x2-2mx+m2-2m+2=0

đen ta=(-2m)2+4*(m2-2m+2)

để phương trình (1) có 3 nghiệm phân biệt 

=> đen ta>0=>4m2-4m2-8m+8>0

=>-8(m+1)>0

=>m=-1

Giá trị m nguyên nhỏ nhất để phương trình (1) có 3 nghiệm phân biệt là m=-1

23 tháng 2 2016

@Tuấn: Delta = 8(m-1) mà. Như vậy m = 2

8 tháng 5 2021

cháu chịu

8 tháng 5 2021

cháu chịu