Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)
xét phương trình 2 ta được ; (m-2)(m+3)x=m+3
với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m
xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z
=>x-1=2k
=>x=2k+1
do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z
=>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn
ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)
\(\Delta=4m^2-8m+9\)
\(\Delta=\left(2m-2\right)^2+5>0\)
do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2
áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)
theo bài ra: x13 + x23 = 27
<=> (x1 + x2 )3 - 3x1x2 (x1+x2) - 27=0 <=> (2m-1)3 - 3(m-2) ( 2m-1) -27 =0
<=> 8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0
<=> 8m3 - 18m2 + 21m - 34 =0 <=> (m-2)(8m2 -2m+17) = 0
\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2
Vậy m=2 thỏa mãn đề bài
( chú giải: PTVN là phương trình vô nghiệm)
(x-1)(x2-2mx+m2-2m+2)=0
=>x2-2mx+m2-2m+2=0
đen ta=(-2m)2+4*(m2-2m+2)
để phương trình (1) có 3 nghiệm phân biệt
=> đen ta>0=>4m2-4m2-8m+8>0
=>-8(m+1)>0
=>m=-1
Giá trị m nguyên nhỏ nhất để phương trình (1) có 3 nghiệm phân biệt là m=-1