\(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 8 2019

Lời giải:
Với $m^2+(m+1)^2>0$ ta thấy:

PT \(\Leftrightarrow \frac{m}{\sqrt{m^2+(m+1)^2}}\sin x+\frac{m+1}{\sqrt{m^2+(m+1)^2}}\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}(*)\)

\((\frac{m}{\sqrt{m^2+(m+1)^2}})^2+(\frac{m+1}{\sqrt{m^2+(m+1)^2}})^2=1\) nên tồn tại $a$ sao cho:

\(\sin a=\frac{m}{\sqrt{m^2+(m+1)^2}}; \cos a=\frac{m+1}{\sqrt{m^2+(m+1)^2}}\). Khi đó:

\((*)\Leftrightarrow \sin a\sin x+\cos a\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

\(\Leftrightarrow \cos (x-a)=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

Để PT có nghiệm thì \(\frac{-1}{\sqrt{m^2+(m+1)^2}}\in [-1;1]\Leftrightarrow m^2+(m+1)^2\geq 1\)

Đặt \(\frac{-1}{\sqrt{m^2+(m+1)^2}}=\cos b(1)\Rightarrow \cos (x-a)=\cos b\)

\(\Leftrightarrow x=a\pm b+2k\pi \) ($k_i$ nguyên)

PT có 2 nghiệm có dạng $x_1=a+b+2k_1\pi$ và $x_1=a-b+2k_2\pi$ (nếu $x_1,x_2$ cùng họ nghiệm thì $|x_1-x_2|=|2n\pi|\neq \frac{\pi}{2}$)

\(\Rightarrow |x_1-x_2|=|2b+2(k_1-k_2)\pi|\)

\(\Rightarrow \cos |x_1-x_2|=\cos |2b+2(k_1-k_2)\pi|=\cos 2b=\cos \frac{\pi}{2}=0\)

\(\Leftrightarrow 2\cos ^2b-1=0\Leftrightarrow \cos ^2b=\frac{1}{2}\). Kết hợp vs $(1)$ suy ra $m^2+(m+1)^2=2$

$\Rightarrow m=\frac{-1\pm \sqrt{3}}{2}$

Thử lại thấy thỏa mãn.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:
Với $m^2+(m+1)^2>0$ ta thấy:

PT \(\Leftrightarrow \frac{m}{\sqrt{m^2+(m+1)^2}}\sin x+\frac{m+1}{\sqrt{m^2+(m+1)^2}}\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}(*)\)

\((\frac{m}{\sqrt{m^2+(m+1)^2}})^2+(\frac{m+1}{\sqrt{m^2+(m+1)^2}})^2=1\) nên tồn tại $a$ sao cho:

\(\sin a=\frac{m}{\sqrt{m^2+(m+1)^2}}; \cos a=\frac{m+1}{\sqrt{m^2+(m+1)^2}}\). Khi đó:

\((*)\Leftrightarrow \sin a\sin x+\cos a\cos x=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

\(\Leftrightarrow \cos (x-a)=\frac{-1}{\sqrt{m^2+(m+1)^2}}\)

Để PT có nghiệm thì \(\frac{-1}{\sqrt{m^2+(m+1)^2}}\in [-1;1]\Leftrightarrow m^2+(m+1)^2\geq 1\)

Đặt \(\frac{-1}{\sqrt{m^2+(m+1)^2}}=\cos b(1)\Rightarrow \cos (x-a)=\cos b\)

\(\Leftrightarrow x=a\pm b+2k\pi \) ($k_i$ nguyên)

PT có 2 nghiệm có dạng $x_1=a+b+2k_1\pi$ và $x_1=a-b+2k_2\pi$ (nếu $x_1,x_2$ cùng họ nghiệm thì $|x_1-x_2|=|2n\pi|\neq \frac{\pi}{2}$)

\(\Rightarrow |x_1-x_2|=|2b+2(k_1-k_2)\pi|\)

\(\Rightarrow \cos |x_1-x_2|=\cos |2b+2(k_1-k_2)\pi|=\cos 2b=\cos \frac{\pi}{2}=0\)

\(\Leftrightarrow 2\cos ^2b-1=0\Leftrightarrow \cos ^2b=\frac{1}{2}\). Kết hợp vs $(1)$ suy ra $m^2+(m+1)^2=2$

$\Rightarrow m=\frac{-1\pm \sqrt{3}}{2}$

Thử lại thấy thỏa mãn.

27 tháng 9 2020

Câu 1 với câu 2 sai đề, sin và cos nằm trong [-1;1], mà căn 2 với căn 3 lớn hơn 1 rồi

3/ \(\sin x=\cos2x=\sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}-2x+k2\pi\\x=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\frac{2}{3}\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

4/ \(\Leftrightarrow\cos^2x-2\sin x\cos x=0\)

Xét \(\cos x=0\) là nghiệm của pt \(\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(\cos x\ne0\Rightarrow1-2\tan x=0\Leftrightarrow\tan x=\frac{1}{2}\Rightarrow x=...\)

5/ \(\Leftrightarrow\sin\left(2x+1\right)=-\cos\left(3x-1\right)=\cos\left(\pi-3x+1\right)=\sin\left(\frac{\pi}{2}-\pi+3x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\frac{\pi}{2}-\pi+3x-1\\2x+1=\pi-\frac{\pi}{2}+\pi-3x+1\end{matrix}\right.\Leftrightarrow....\)

6/ \(\Leftrightarrow\cos\left(\pi\left(x-\frac{1}{3}\right)\right)=\frac{1}{2}\Leftrightarrow\pi\left(x-\frac{1}{3}\right)=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{1}{3}+2k\Rightarrow x=\frac{2}{3}+2k\left(1\right)\\x-\frac{1}{3}=-\frac{1}{3}+2k\Rightarrow x=2k\left(2\right)\end{matrix}\right.\)

\(\left(1\right):-\pi< x< \pi\Rightarrow-\pi< \frac{2}{3}+2k< \pi\) (Ủa đề bài sai hay sao ý nhỉ?)

7/ \(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x+\frac{\pi}{3}\\5x+\frac{\pi}{3}=\pi-\frac{\pi}{2}+2x-\frac{\pi}{3}\end{matrix}\right.\Leftrightarrow...\)

Thui, để đây bao giờ...hết lười thì làm tiếp :(

27 tháng 9 2020

7)

\(sin\left(5x+\frac{\pi}{3}\right)=cos\left(2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=\frac{\pi}{2}-2x-\frac{\pi}{3}+k2\pi\\5x+\frac{\pi}{3}=\pi-\left(\frac{\pi}{2}-2x-\frac{\pi}{3}\right)+k2\pi\end{matrix}\right.\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\pi}{42}+k\frac{2\pi}{7}\\x=\frac{\pi}{6}+k\frac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)

Do:\(0< x< \pi\)

\(Với:x=\frac{-\pi}{42}+k\frac{2\pi}{7}\left(k\in Z\right)\Rightarrow khôngtìmđượck\)

\(Với:x=\frac{\pi}{6}+k\frac{2\pi}{3}\left(k\in Z\right)\Leftrightarrow\frac{1}{4}< k< \frac{5}{4}\Rightarrow k=\left\{0;1\right\}\Rightarrow\left[{}\begin{matrix}k=0\Rightarrow x=\frac{\pi}{6}\\k=1\Rightarrow x=\frac{5\pi}{6}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=\frac{\pi}{6};x=\frac{5\pi}{6}\)

NV
20 tháng 9 2020

b/

\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)

\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)

\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)

Bạn tự cộng lại

NV
20 tháng 9 2020

c/

\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)

\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)

\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)

\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)

Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho

\(-1< cosx< 0\Rightarrow-1< m< 0\)

17 tháng 8 2019
https://i.imgur.com/BisGxxf.jpg
17 tháng 8 2019
https://i.imgur.com/onDIc4W.jpg
16 tháng 9 2016

shift sholve bạn nhá

16 tháng 9 2016

là sao hả bn ?