Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự giải
b. Pt có nghiệm kép khi:
\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)
Khi đó: \(x_{1,2}=m+1=2\)
c. Do pt có nghiệm bằng 4:
\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)
\(\Leftrightarrow8-4m=0\Rightarrow m=2\)
\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
1) Để phương trình có hai nghiệm trái dấu thì
\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.
Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.
2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.
Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.
3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.
4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):
A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).
Dấu "=" xảy ra khi x=16/5 (nhận).
Vậy minA=7/16 tại m=16/5.
Cách ngắn ngọn nhất:
\(x^2-2\left(m+1\right)x+4m=0\left(1\right)\)
\(\Leftrightarrow x^2-2x-2mx+4m=0\)
\(\Leftrightarrow x\left(x-2\right)-2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2m\end{matrix}\right.\)
Phương trình (1) có 2 nghiệm là \(x=2;x=2m\). Mặt khác phương trình (1) cũng có 2 nghiệm là x1, x2 nên ta chia làm 2 trường hợp:
TH1: \(x_1=2;x_2=2m\).
Có \(2x_1-x_2=-2\Rightarrow2.2-2m=-2\Leftrightarrow m=3\)
TH2: \(x_1=2m;x_2=2\)
Có \(2x_1-x_2=-2\Rightarrow2.\left(2m\right)-2=-2\Leftrightarrow m=0\)
Vậy m=0 hay m=3
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
\(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\left(1\right)\\m^2x-y=m^2-3m\end{matrix}\right.\)
\(\Rightarrow\left(m^2+2m+1\right)x=m^2-m-2\)
\(\Rightarrow x=\dfrac{m^2-m-2}{m^2+2m+1}\left(m\ne-1\right)\)
\(\Rightarrow x=1+\dfrac{-3m-3}{m^2+2m+1}=1+\dfrac{-3\left(m+1\right)}{\left(m+1\right)^2}=1+\dfrac{-3}{m+1}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow y=2m-2-\left(2m+1\right)\left(1-\dfrac{3}{m+1}\right)\)
\(\Rightarrow y=\dfrac{3m}{m+1}=3+\dfrac{-1}{m+1}\)
\(\Rightarrow x,y\in Z\left(m\in Z\right)\Leftrightarrow\left\{{}\begin{matrix}m+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\m+1\inƯ\left(1\right)=\left\{\pm1\right\}\end{matrix}\right.\)
\(\Rightarrow m+1=\pm1\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)