Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, điều kiện xác định là \(x\ne1;x\ne-1\)
\(\frac{3x+3}{x^2-1}\)
\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x-1}\)
b, để \(\frac{3x+3}{x^2-1}=-2\Rightarrow\frac{3}{x-1}=-2\)
\(\Rightarrow-2x+2=3\)
\(\Rightarrow-2x=1\)
\(\Rightarrow x=-\frac{1}{2}\)
a. ĐKXĐ: x2 - 1\(\ne\)0 (=) x \(\ne\)\(\pm\)1
b. \(\frac{3x+3}{x^2-1}\)
\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x+1}\)với x \(\pm\)1
c. \(\frac{3}{x+1}=-2\)
\(\Rightarrow\)\(\left(x+1\right).\left(-2\right)=3\)
\(-2x-2=3\)
\(-2x=5\)
\(x=-\frac{5}{2}\)(t/m đk)
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
\(P=\dfrac{3x^2+6x+3}{x+1}\)
\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)
\(c,x=1\Rightarrow P=3.1+3=6\)
a) Điều kiện xác định của \(P\) là:
\(\left(x+1\right)\left(2x-6\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\) (\(x\ne-1,x\ne3\))
\(=\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}\)
\(P=1\Rightarrow\dfrac{3x}{2\left(x-3\right)}=1\Rightarrow3x=2\left(x-3\right)\Leftrightarrow x=-6\) (thỏa mãn)
c) \(P>0\Rightarrow\dfrac{3x}{2\left(x-3\right)}>0\Leftrightarrow\dfrac{x}{x-3}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< 0\end{matrix}\right.\)
Kết hợp với điều kiện xác định ta được để \(P>0\) thì \(x>3\) hoặc \(x< 0,x\ne-1\).
Bài 1:
a) x≠2x≠2
Bài 2:
a) x≠0;x≠5x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5xx−5x phải có giá trị nguyên.
=> x=−5x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
a) Phân thức xác định khi: \(\Leftrightarrow x-3\ne3\Leftrightarrow x\ne3\)
ĐKXĐ: \(x\ne3\)
b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)
c) Thay x = -4 vào phân thức đã thu gọn, ta có:
\(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)
Vậy: tại x = -4 là \(\frac{8}{7}\)
a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
Phân thức xác định khi: \(\left(x-3\right)\left(x+3\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-3\end{cases}}\Leftrightarrow x\ne\pm3\)
ĐKXĐ: \(x\ne\pm3\)
b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)
c) \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)
a)ĐKXĐ:
\(x+2\ne0\Leftrightarrow x\ne-2\)
b)\(\frac{x^2+4x+4}{x+2}=\frac{\left(x+2\right)^2}{x+2}=x+2\)
c)\(\text{Để phân thức =0 thì x+2=0},\text{mà x+2}\ne0\text{,nên ko có giá trị nào của để phân thức =0}\)
\(\frac{x^2+4x+4}{x+2}\)
a/ Để phân thức đc xác định thì x + 2 \(\ne\) 0 => x \(\ne\) -2
Vậy để phân thức đc xác định thì x \(\ne\) -2
b/ \(\frac{x^2+4x+4}{x+2}=\frac{\left(x+2\right)^2}{x+2}=x+2\)
c/ Để phân thức bằng 0 thì x + 2 = 0 => x = -2 (loại)
Vậy không có giá trị nào của x để phân thức = 0
a. \(x\ne5\) là ĐKXĐ của biểu thức P
b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)
c. P = -1 <=> x-5 =-1 <=> x=4
a) Giá trị của phân thức được xác định
\(\Leftrightarrow x^2-1\ne0\)
\(\Leftrightarrow x\ne\pm1\)
Vậy để giá trị của phân thức đã cho xác định \(\Leftrightarrow x\ne\pm1\)
b)Ta có:
\(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)
c) Để phân thức nhận giá trị nguyên dương
\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên dương
\(\Leftrightarrow x-1\)\(\inƯ\left(3\right)=\left\{1;3\right\}\)
Vậy với \(x\in\left\{2;4\right\}\)thì giá trị của phân thức có giá trị nguyên dương.